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What Is the Financial Toolbox?
MATLAB® and the Financial Toolbox provide a complete integrated computing 
environment for financial analysis and engineering. The toolbox has 
everything you need to perform mathematical and statistical analysis of 
financial data and display the results with presentation-quality graphics. You 
can quickly ask, visualize, and answer complicated questions.

In traditional or spreadsheet programming you must deal with all sorts of 
housekeeping details: declaring, data typing, sizing, etc. MATLAB does all that 
for you. You just write expressions the way you think of problems. There is no 
need to switch tools, convert files, or rewrite applications.

With MATLAB and the Financial Toolbox, you can

• Compute and analyze prices, yields, and sensitivities for derivatives and 
other securities, and for portfolios of securities. 

• Perform Securities Industry Association (SIA) compatible fixed-income 
pricing, yield, and sensitivity analysis.

• Analyze or manage portfolios.

• Design and evaluate hedging strategies.

• Identify, measure, and control risk.

• Analyze and compute cash flows, including rates of return and depreciation 
streams.

• Analyze and predict economic activity.

• Create structured financial instruments, including foreign-exchange 
instruments.

• Teach or conduct academic research.

This chapter uses MATLAB to review the fundamentals of matrix algebra you 
need for financial analysis and engineering applications. It contains these 
sections:

• “Using Matrix Functions for Finance” on page 1-4

Reviews “Key Definitions” on page 1-4 and some matrix algebra 
fundamentals, such as “Referencing Matrix Elements” on page 1-4 and 
“Transposing Matrices” on page 1-6.
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• “Matrix Algebra Refresher” on page 1-7

Provides a brief refresher on using matrix functions in financial analysis and 
engineering

• “Function Input/Output Arguments” on page 1-18

Describes acceptable formats for providing data to MATLAB and the 
resulting output from computations on the supplied data.

This material explains some MATLAB concepts and operations using financial 
examples to help get you started.
1-3



1 Getting Started

1-4
Using Matrix Functions for Finance
Many financial analysis procedures involve sets of numbers; for example, a 
portfolio of securities at various prices and yields. Matrices, matrix functions, 
and matrix algebra are the most efficient ways to analyze sets of numbers and 
their relationships. Spreadsheets focus on individual cells and the 
relationships between cells. While you can think of a set of spreadsheet cells (a 
range of rows and columns) as a matrix, a matrix-oriented tool like MATLAB 
manipulates sets of numbers more quickly, easily, and naturally.

Key Definitions

Matrix. A rectangular array of numeric or algebraic quantities subject to 
mathematical operations; the regular formation of elements into rows and 
columns. Described as an “m-by-n” matrix, with m the number of rows and n 
the number of columns. The description is always “row-by-column.” For 
example, here is a 2-by-3 matrix of two bonds (the rows) with different par 
values, coupon rates, and coupon payment frequencies per year (the columns) 
entered using MATLAB notation.

Bonds = [1000   0.06   2
          500   0.055  4]

Vector. A matrix with only one row or column. Described as a “1-by-n” or 
“m-by-1” matrix. The description is always “row-by-column.” Here is a 1-by-4 
vector of cash flows in MATLAB notation.

Cash = [1500 4470 5280 -1299]

Scalar. A 1-by-1 matrix; i.e., a single number.

Referencing Matrix Elements
To reference specific matrix elements use (row, column) notation. For example,

Bonds(1,2)

ans =

          0.06
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Cash(3)

ans =

       5280.00

You can enlarge matrices using small matrices or vectors as elements. For 
example,

AddBond = [1000   0.065   2];
Bonds = [Bonds; AddBond]

adds another row to the matrix and creates

Bonds =

       1000   0.06    2
        500   0.055   4
       1000   0.065   2

Likewise,

Prices = [987.50
475.00
995.00]

Bonds = [Prices, Bonds]

adds another column and creates

Bonds =

987.50   1000   0.06    2
475.00    500   0.055   4
995.00   1000   0.065   2
1-5
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Finally, the colon (:) is important in generating and referencing matrix 
elements. For example, to reference the par value, coupon rate, and coupon 
frequency of the second bond.

BondItems = Bonds(2, 2:4)

BondItems =

500.00   0.055   4

Transposing Matrices
Sometimes matrices are in the wrong configuration for an operation. In 
MATLAB, the apostrophe or prime character (') transposes a matrix: columns 
become rows, rows become columns. For example,

Cash = [1500 4470 5280 -1299]'

produces

Cash =

        1500
        4470
        5280

-1299
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Matrix Algebra Refresher
Matrix algebra and matrix operations are fundamental to using MATLAB in 
financial analysis and engineering. The topics discussed in this section include

• “Adding and Subtracting Matrices” on page 1-7

• “Multiplying Matrices” on page 1-8

• “Dividing Matrices” on page 1-13

• “Solving Simultaneous Linear Equations” on page 1-13

• “Operating Element-by-Element” on page 1-17

These explanations should help refresh your skills.

William Sharpe’s Macro-Investment Analysis also provides an excellent 
explanation of matrix algebra operations using MATLAB. It is available on the 
Web at

http://www.stanford.edu/~wfsharpe/mia/mia.htm

Note  When you are setting up a problem, it helps to “talk through” the units 
and dimensions associated with each input and output matrix. In the example 
under “Multiplying Matrices” below, one input matrix has “five days’ closing 
prices for three stocks,” the other input matrix has “shares of three stocks in 
two portfolios,” and the output matrix therefore has “five days’ closing values 
for two portfolios.” It also helps to name variables using descriptive terms.

Adding and Subtracting Matrices
Matrix addition and subtraction operate element-by-element. The two input 
matrices must have the same dimensions. The result is a new matrix of the 
same dimensions where each element is the sum or difference of each 
corresponding input element. For example, consider combining portfolios of 
different quantities of the same stocks (“shares of stocks A, B, and C [the rows] 
in portfolios P and Q [the columns] plus shares of A, B, and C in portfolios R 
and S”).

Portfolios_PQ = [100   200
500   400
300   150];
1-7
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Portfolios_RS = [175   125
200   200
100   500];

NewPortfolios = Portfolios_PQ + Portfolios_RS

NewPortfolios =

        275.00        325.00
        700.00        600.00
        400.00        650.00

Adding or subtracting a scalar and a matrix is allowed and also operates 
element-by-element.

SmallerPortf = NewPortfolios-10

SmallerPortf =
        265.00        315.00
        690.00        590.00
        390.00        640.00

Multiplying Matrices
Matrix multiplication does not operate element-by-element. It operates 
according to the rules of linear algebra. In multiplying matrices, it helps to 
remember this key rule: the inner dimensions must be the same. That is, if the 
first matrix is m-by-3, the second must be 3-by-n. The resulting matrix is 
m-by-n. It also helps to “talk through” the units of each matrix, as mentioned 
above.

Matrix multiplication also is not commutative; i.e., it is not independent of 
order. A∗B does not equal B∗A. The dimension rule illustrates this property. If 
A is 1-by-3 and B is 3-by-1, A∗B yields a scalar (1-by-1) but B∗A yields a 3-by-3 
matrix.

Multiplying Vectors
Vector multiplication follows the same rules and helps illustrate the principles. 
For example, a stock portfolio has three different stocks and their closing prices 
today are
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ClosePrices = [42.5   15   78.875]

The portfolio contains these numbers of shares of each stock.

NumShares = [100
    500
  300]

To find the value of the portfolio, simply multiply the vectors

PortfValue = ClosePrices * NumShares

which yields

PortfValue =

      35412.50

The vectors are 1-by-3 and 3-by-1; the resulting vector is 1-by-1, a scalar. 
Multiplying these vectors thus means multiplying each closing price by its 
respective number of shares and summing the result.

To illustrate order dependence, switch the order of the vectors

Values = NumShares * ClosePrices

Values =

       4250.00       1500.00       7887.50
      21250.00       7500.00      39437.50
      12750.00       4500.00      23662.50

which shows the closing values of 100, 500, and 300 shares of each stock — not 
the portfolio value, and meaningless for this example.
1-9
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Computing Dot Products of Vectors
In matrix algebra, if X and Y are vectors of the same length

then the dot product

is the scalar product of the two vectors. It is an exception to the commutative 
rule. To compute the dot product in MATLAB, use sum(X .* Y) or sum(Y .* 
X). Just be sure the two vectors have the same dimensions. To illustrate, use 
the previous vectors.

Value = sum(NumShares .* ClosePrices')

Value =

      35412.50

Value = sum(ClosePrices .* NumShares')

Value =

      35412.50

As expected, the value in these cases is exactly the same as the PortfValue 
computed previously.

Multiplying Vectors and Matrices
Multiplying vectors and matrices follows the matrix multiplication rules and 
process. For example, a portfolio matrix contains closing prices for a week. A 
second matrix (vector) contains the stock quantities in the portfolio.

WeekClosePr = [42.5     15      78.875
42.125   15.5    78.75
42.125   15.125  79
42.625   15.25   78.875
43       15.25   78.625];

Y y1 y2 …, yn,,[ ]=

X x1 x2 …, xn,,[ ]=

X Y• x1y1 x2y2 … xnyn+ + +=
0
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PortQuan = [100
 500
 300];

To see the closing portfolio value for each day, simply multiply

WeekPortValue = WeekClosePr * PortQuan

WeekPortValue =

      35412.50
      35587.50
      35475.00
      35550.00
      35512.50

The prices matrix is 5-by-3, the quantity matrix (vector) is 3-by-1, so the 
resulting matrix (vector) is 5-by-1.

Multiplying Two Matrices
Matrix multiplication also follows the rules of matrix algebra. In matrix 
algebra notation, if A is an m-by-n matrix and B is an n-by-p matrix 

then C = A∗B is an m-by-p matrix; and the element cij in the ith row and jth 
column of C is

To illustrate, assume there are two portfolios of the same three stocks above 
but with different quantities.

Portfolios = [100   200
    500   400
    300   150];

A

a11 a12 … a1n

ai1 ai2 … ain

am1 am2 … amn

=   B

b11 … b1j … b1p

b21 … b2j … b2p

bn1 bnj bnp

=,

…

… … …… … …

… …

cij ai1b1j ai2b2j … ainbnj+ + +=
1-11
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Multiplying the 5-by-3 week’s closing prices matrix by the 3-by-2 portfolios 
matrix yields a 5-by-2 matrix showing each day’s closing value for both 
portfolios.

PortfolioValues = WeekClosePr * Portfolios

PortfolioValues =

      35412.50      26331.25
      35587.50      26437.50
      35475.00      26325.00
      35550.00      26456.25
      35512.50      26493.75

Monday’s values result from multiplying each Monday closing price by its 
respective number of shares and summing the result for the first portfolio, then 
doing the same for the second portfolio. Tuesday’s values result from 
multiplying each Tuesday closing price by its respective number of shares and 
summing the result for the first portfolio, then doing the same for the second 
portfolio. And so on through the rest of the week. With one simple command, 
MATLAB quickly performs many calculations.

Multiplying a Matrix by a Scalar
Multiplying a matrix by a scalar is an exception to the dimension and 
commutative rules. It just operates element-by-element.

Portfolios = [100   200
    500   400
    300   150];

DoublePort = Portfolios * 2

DoublePort =
        200.00        400.00
       1000.00        800.00
        600.00        300.00
2
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Dividing Matrices
Matrix division is useful primarily for solving equations, and especially for 
solving simultaneous linear equations (see the next section). For example, you 
want to solve for X in A∗X = B.

In ordinary algebra, you would simply divide both sides of the equation by A, 
and X would equal B/A. However, since matrix algebra is not commutative 
(A∗X ≠ X∗A), different processes apply. In formal matrix algebra, the solution 
involves matrix inversion. MATLAB, however, simplifies the process by 
providing two matrix division symbols, left and right (\ and /). In general,

X = A\B solves for X in A∗X = B

X = B/A solves for X in X∗A = B.

In general, matrix A must be a nonsingular square matrix; i.e., it must be 
invertible and it must have the same number of rows and columns. (Generally, 
a matrix is invertible if the matrix times its inverse equals the identity matrix. 
To understand the theory and proofs, please consult a textbook on linear 
algebra such as the one by Hill listed in Appendix A, “Bibliography.”) MATLAB 
gives a warning message if the matrix is singular or nearly so.

Solving Simultaneous Linear Equations
Matrix division is especially useful in solving simultaneous linear equations. 
Consider this problem: given two portfolios of mortgage-based instruments, 
each with certain yields depending on the prime rate, how do you weight the 
portfolios to achieve certain annual cash flows? The answer involves solving 
two linear equations.

A linear equation is any equation of the form

where a1, a2, and b are constants (with a1 and a2 not both zero), and x and y 
are variables. (It’s a linear equation because it describes a line in the xy-plane. 
For example the equation 2x + y = 8 describes a line such that if x = 2 then 
y = 4.)

A system of linear equations is a set of linear equations that we usually want 
to solve at the same time; i.e., simultaneously. A basic principle for exact 
answers in solving simultaneous linear equations requires that there be as 
many equations as there are unknowns. To get exact answers for x and y there 

a1x a2y+ b=
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must be two equations. For example, to solve for x and y in the system of linear 
equations

there must be two equations, which there are. Matrix algebra represents this 
system as an equation involving three matrices: A for the left-side constants, X 
for the variables, and B for the right-side constants

where A∗X = B.

Solving the system simultaneously simply means solving for X. Using 
MATLAB,

A = [2  1
     1 −3];

B = [13
    −18];

X = A \ B

solves for X in A * X = B.

X = [3
     7]

So x = 3 and y = 7 in this example. In general, you can use matrix algebra to 
solve any system of linear equations such as

by representing them as matrices

2x y+ 13=

x 3y– 18–=

A 2 1
1 3–

=          X x
y

=           B 13
18–

=

a11x1 a12x2 … a1nxn+ + + b1=

a21x1 a22x2 … a2nxn+ + + b2=

am1x1 am2x2 … amnxn+ + + bm=

…

4
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and solving for X in A∗X = B.

To illustrate, consider this situation. There are two portfolios of 
mortgage-based instruments, M1 and M2. They have current annual cash 
payments of $100 and $70 per unit, respectively, based on today’s prime rate. 
If the prime rate moves down one percentage point, their payments would be 
$80 and $40. An investor holds 10 units of M1 and 20 units of M2. The 
investor’s receipts equal cash payments times units, or R = C * U, for each 
prime-rate scenario. 

As word equations,

As MATLAB matrices,

Cash = [100  70
         80  40];

Units =[10
        20];

Receipts = Cash * Units

Receipts =

       2400.00
       1600.00

M1 M2

Prime flat: $100 * 10 units+ $70 * 20 units = $2400 receipts

Prime down:  $80 * 10 units + $40 * 20 units = $1600 receipts

A

a11 a12 … a1n

a21 a22 … a2n

am1 am2 … amn

=          X

x1

x2

xn

=              B

b1

b2

bm

=…… … … ……
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Now the investor asks the question: given these two portfolios and their 
characteristics, how many units of each should I hold to receive $7000 if the 
prime rate stays flat and $5000 if the prime drops one percentage point? Find 
the answer by solving two linear equations.

In other words, solve for U (units) in the equation R (receipts) = C (cash) * U 
(units). Using MATLAB left division

Cash = [100  70
         80  40];

Receipts = [7000
            5000];

Units = Cash \ Receipts
Units =

         43.75
         37.50

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio 
M2 to achieve the annual receipts desired.

M1 M2

Prime flat: $100 * x units + $70 * y units = $7000 receipts

Prime down:  $80 * x units + $40 * y units = $5000 receipts
6
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Operating Element-by-Element
Finally, element-by-element arithmetic operations are called array operations. 
To indicate an array operation in MATLAB, precede the operator with a period 
(.). Addition and subtraction, and matrix multiplication and division by a 
scalar, are already array operations so no period is necessary. When using 
array operations on two matrices, the dimensions of the matrices must be the 
same. For example, given vectors of stock dividends and closing prices,

Dividends = [1.90  0.40  1.56  4.50];
Prices = [25.625  17.75  26.125  60.50];

Yields = Dividends ./ Prices

Yields =

    0.0741    0.0225    0.0597    0.0744
1-17
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Function Input/Output Arguments
MATLAB was designed to be a large-scale array (vector or matrix) processor. 
In addition to its linear algebra applications, the general array-based 
processing facility has the capability to perform repeated operations on 
collections of data. When MATLAB code is written to operate simultaneously 
on collections of data stored in arrays, the code is said to be vectorized. 
Vectorized code is not only clean and concise, but is also efficiently processed 
by the underlying MATLAB engine.

Input Arguments

Matrix Input
Because MATLAB can process vectors and matrices easily, most functions in 
the Financial Toolbox allow vector or matrix input arguments, rather than just 
single (scalar) values. 

For example, the irr function computes the internal rate of return of a cash 
flow stream. It accepts a vector of cash flows and returns a scalar-valued 
internal rate of return. However, it also accepts a matrix of cash flow streams, 
a column in the matrix representing a different cash flow stream. In this case, 
irr returns a vector of internal rates of return, each entry in the vector 
corresponding to a column of the input matrix. Many other toolbox functions 
work similarly.

As an example, suppose you make an initial investment of $100, from which 
you then receive by a series of annual cash receipts of $10, $20, $30, $40, and 
$50. This cash flow stream may be stored in a vector

CashFlows = [-100 10 20 30 40 50]'

which MATLAB displays as

CashFlows =
  -100
    10
    20
    30
    40
    50
8
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The irr function can compute the internal rate of return of this stream.

Rate = irr(CashFlows)

The internal rate of return of this investment is

Rate =

    0.1201

or 12.01%.

In this case, a single cash flow stream (written as an input vector) produces a 
scalar output – the internal rate of return of the investment.

Extending this example, if you process a matrix of identical cash flow streams

Rate = irr([CashFlows CashFlows CashFlows])

you should expect to see identical internal rates of return for each of the three 
investments.

Rate =

    0.1201    0.1201    0.1201

This simple example illustrates the power of vectorized programming. The 
example shows how to collect data into a matrix and then use a toolbox function 
to compute answers for the entire collection. This feature can be useful in 
portfolio management, for example, where you might want to organize multiple 
assets into a single collection. Place data for each asset in a different column or 
row of a matrix, then pass the matrix to a Financial Toolbox function. MATLAB 
performs the same computation on all of the assets at once.

Matrices of String Input
Enter strings in MATLAB surrounded by single quotes ('string').

Strings are stored as character arrays, one ASCII character per element. Thus 
the date string

DateString = '9/16/2001'

is actually a 1-by-9 vector. Strings making up the rows of a matrix or vector all 
must have the same length. To enter several date strings, therefore, use a 
column vector and be sure all strings are the same length. Fill in with spaces 
1-19
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or zeros. For example, to create a vector of dates corresponding to irregular 
cash flows,

DateFields = ['01/12/2001'
      '02/14/2001'
      '03/03/2001'
     '06/14/2001'
      '12/01/2001'];

DateFields actually becomes a 5-by-10 character array.

Don’t mix numbers and strings in a matrix. If you do, MATLAB treats all 
entries as characters. For example,

Item = [83  90  99 '14-Sep-1999']

becomes a 1-by-14 character array, not a 1-by-4 vector, and it contains

Item =

SZc14-Sep-1999

Function Output Arguments
Some functions return no arguments, some return just one, and some return 
multiple arguments. Functions that return multiple arguments use the syntax

[A, B, C] = function(variables...)

to return arguments A, B, and C. If you omit all but one, the function returns 
the first argument. Thus, for this example if you use the syntax

X = function(variables...)

function returns a value for A, but not for B or C.

Some functions that return vectors accept only scalars as arguments. Why 
could such functions not accept vectors as arguments and return matrices, 
where each column in the output matrix corresponds to an entry in the input 
vector? The answer is that the output vectors can be variable length and thus 
will not fit in a matrix without some convention to indicate that the shorter 
columns are missing data.
0



Function Input/Output Arguments
Functions that require asset life as an input, and return values corresponding 
to different periods over that life, cannot generally handle vectors or matrices 
as input arguments. Those functions are

For example, suppose you have a collection of assets such as automobiles and 
you want to compute the depreciation schedules for them. The function 
depfixdb computes a stream of declining-balance depreciation values for an 
asset. You might want to set up a vector where each entry is the initial value 
of each asset. depfixdb also needs the lifetime of an asset. If you were to set up 
such a collection of automobiles as an input vector, and the lifetimes of those 
automobiles varied, the resulting depreciation streams would differ in length 
according to the life of each automobile, and the output column lengths would 
vary. A matrix must have the same number of rows in each column.

Interest Rate Arguments
One common argument, both as input and output, is interest rate. All Financial 
Toolbox functions expect and return interest rates as decimal fractions. Thus 
an interest rate of 9.5% is indicated as 0.095.

amortize Amortization

depfixdb Fixed declining-balance depreciation

depgendb General declining-balance depreciation

depsoyd Sum of years’ digits depreciation
1-21



1 Getting Started

1-2
2



2

Tutorial

Handling and Converting Dates (p. 2-4) Date strings and serial date numbers. Date conversions. 
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Derivatives (p. 2-33)
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The Financial Toolbox contains functions that perform many common financial 
tasks, including

• Handling and converting dates

Calendar functions convert dates among different formats (including Excel 
formats), determine future or past dates, find dates of holidays and business 
days, compute time differences between dates, find coupon dates and coupon 
periods for coupon bonds, and compute time periods based on 360-, 365-, or 
366-day years.

• Formatting currency

The toolbox includes functions for handling decimal values in bank 
(currency) formats and as fractional prices.

• Charting financial data

Charting functions produce a variety of financial charts including Bollinger 
bands, high-low-close charts, candlestick plots, point and figure plots, and 
moving-average plots. The Financial Time Series Toolbox provides 
additional charting functions. See the Financial Time Series Toolbox User’s 
Guide for a description of these functions.

• Analyzing and computing cash flows

Cash-flow evaluation and financial accounting functions compute interest 
rates, rates of return, payments associated with loans and annuities, future 
and present values, depreciation, and other standard accounting 
calculations associated with cash-flow streams.

• Pricing and computing yields for fixed-income securities; analyzing the term 
structure of interest rates

Securities Industry Association (SIA) compliant fixed-income functions 
compute prices, yields, accrued interest, and sensitivities for securities such 
as bonds, zero-coupon bonds, and Treasury bills. They handle odd first and 
last periods in price/yield calculations, compute accrued interest and 
discount rates, and calculate convexity and duration. Another set of 
functions analyzes term structure of interest rates, including pricing bonds 
from yield curves and bootstrapping yield curves from market prices.



• Pricing and analyzing equity derivatives

Derivatives analysis functions compute prices, yields, and sensitivities for 
derivative securities. They deal with both European and American options.

Black-Scholes functions work with European options. They compute delta, 
gamma, lambda, rho, theta, and vega, as well as values of call and put 
options.

Binomial functions work with American options, computing put and call 
prices. 

• Analyzing portfolios

Portfolio analysis functions provide basic utilities to compute variances and 
covariance of portfolios, find combinations to minimize variance, compute 
Markowitz efficient frontiers, and calculate combined rates of return.

The toolbox also contains sets of functions for modeling volatility in time series.

• Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 
functions model the volatility of univariate economic time series. (The 
GARCH Toolbox provides a more comprehensive and integrated computing 
environment. For more information see the GARCH Toolbox documentation 
or the financial products Web page at 
http://www.mathworks.com/products/finprod.)
2-3
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Handling and Converting Dates
Since virtually all financial data is dated or derives from a time series, 
financial functions must have extensive date-handling capabilities. This 
section discusses date handling in the Financial Toolbox, specifically these 
topics:

• “Date Formats” on page 2-4

• “Date Conversions” on page 2-5

• “Current Date and Time” on page 2-8

• “Determining Dates” on page 2-9

Note  If you specify a two-digit year, MATLAB assumes that the year lies 
within the 100-year period centered about the current year. See the function 
datenum for specific information. MATLAB internal date handling and 
calculations generate no ambiguous values. However, whenever possible, 
programmers should use serial date numbers or date strings containing 
four-digit years.

Date Formats
You most often work with date strings (14-Sep-1999) when dealing with dates. 
The Financial Toolbox works internally with serial date numbers (e.g., 730377). 
A serial date number represents a calendar date as the number of days that has 
passed since a fixed base date. In MATLAB, serial date number 1 is January 1, 
0000 A.D. MATLAB also uses serial time to represent fractions of days 
beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So 6:00 pm 
on 14-Sep-1999, in MATLAB, is date number 730377.75.

Many toolbox functions that require dates accept either date strings or serial 
date numbers. If you are dealing with a few dates at the MATLAB 
command-line level, date strings are more convenient. If you are using toolbox 
functions on large numbers of dates, as in analyzing large portfolios or cash 
flows, performance improves if you use date numbers.

The toolbox provides functions that convert date strings to serial date numbers, 
and vice versa.
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Date Conversions
The toolbox provides functions that convert between date formats.

Another function, datevec, converts a date number or date string to a date 
vector whose elements are [Year Month Day Hour Minute Second]. Date 
vectors are mostly an internal format for some MATLAB functions; you would 
not often use them in financial calculations.

Input Conversions
The datenum function is important for using the Financial Toolbox efficiently. 
datenum takes an input string in any of several formats, with 'dd-mmm-yyyy', 
'mm/dd/yyyy' or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. The input 
string can have up to six fields formed by letters and numbers separated by any 
other characters:

• The day field is an integer from 1 to 31.

• The month field is either an integer from 1 to 12 or an alphabetic string with 
at least three characters.

• The year field is a nonnegative integer: if only two numbers are specified, 
then the year is assumed to lie within the 100-year period centered about the 
current year; if the year is omitted, the current year is used as the default.

• The hours, minutes, and seconds fields are optional. They are integers 
separated by colons or followed by 'am' or 'pm'.

For example, if the current year is 1999, then these are all equivalent

'17-May-1999'
'17-May-99'

datedisp Displays a numeric matrix with date entries formatted as 
date strings

datenum Converts a date string to a serial date number

datestr Converts a serial date number to a date string

m2xdate Converts MATLAB serial date number to Excel serial date 
number

x2mdate Converts Excel serial date number to MATLAB serial date 
number
2-5
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'17-may'
'May 17, 1999'
'5/17/99'
'5/17'

and both of these represent the same time.

'17-May-1999, 18:30'
'5/17/99/6:30 pm'

Note that the default format for numbers-only input follows the American 
convention. Thus 3/6 is March 6, not June 3.

With datenum you can convert dates into serial date format, store them in a 
matrix variable, then later pass the variable to a function. Alternatively, you 
can use datenum directly in a function input argument list. 

For example, consider the function bndprice that computes the price of a bond 
given the yield-to-maturity. First set up variables for the yield-to-maturity, 
coupon rate, and the necessary dates.

Yield       = 0.07;
CouponRate  = 0.08;
Settle      = datenum('17-May-2000');
Maturity    = datenum('01-Oct-2000');

Then call the function with the variables

bndprice(Yield, CouponRate, Settle, Maturity)

Alternatively, convert date strings to serial date numbers directly in the 
function input argument list.

bndprice(0.07, 0.08, datenum('17-May-2000'),... 
datenum('01-Oct-2000'))

bndprice is an example of a function designed to detect the presence of date 
strings and make the conversion automatically. For these functions date 
strings may be passed directly.

bndprice(0.07, 0.08, '17-May-2000', '01-Oct-2000')

The decision to represent dates as either date strings or serial date numbers is 
often a matter of convenience. For example, when formatting data for visual 
display or for debugging date-handling code, it is often much easier to view 
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dates as date strings because serial date numbers are difficult to interpret. 
Alternatively, serial date numbers are just another type of numeric data, and 
can be placed in a matrix along with any other numeric data for convenient 
manipulation.

Remember that if you create a vector of input date strings, use a column vector 
and be sure all strings are the same length. Fill with spaces or zeros. See 
“Matrices of String Input” on page 1-19.

Output Conversions
The function datestr converts a serial date number to one of 19 different date 
string output formats showing date, time, or both. The default output for dates 
is a day-month-year string, e.g., 24-Aug-2000. This function is quite useful for 
preparing output reports.

Format Description

01-Mar-2000 
15:45:17

day-month-year hour:minute:second

01-Mar-2000 day-month-year

03/01/00 month/day/year

Mar month, three letters

M month, single letter

3 month

03/01 month/day

1 day of month

Wed day of week, three letters

W day of week, single letter

2000 year, four numbers

99 year, two numbers

Mar01 month year
2-7
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Current Date and Time 
The functions today and now return serial date numbers for the current date, 
and the current date and time, respectively.

today

ans =
      730693

now

ans =

730693.48

The MATLAB function date returns a string for today’s date.

date

ans =

26-Jul-2000

15:45:17 hour:minute:second

03:45:17 PM hour:minute:second AM or PM

15:45 hour:minute

03:45 PM hour:minute AM or PM

Q1-99 calendar quarter-year

Q1 calendar quarter

Format Description
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Determining Dates
The toolbox provides many functions for determining specific dates, including 
functions which account for holidays and other nontrading days.

For example, you schedule an accounting procedure for the last Friday of every 
month. The lweekdate function returns those dates for 2000; the 6 specifies 
Friday.

Fridates = lweekdate(6, 2000, 1:12);

Fridays = datestr(Fridates)

Fridays =

28-Jan-2000
25-Feb-2000
31-Mar-2000
28-Apr-2000
26-May-2000
30-Jun-2000
28-Jul-2000
25-Aug-2000
29-Sep-2000
27-Oct-2000
24-Nov-2000
29-Dec-2000

Or your company closes on Martin Luther King Jr. Day, which is the third 
Monday in January. The nweekdate function determines those dates for 2001 
through 2004.

MLKDates = nweekdate(3, 2, 2001:2004, 1);

MLKDays = datestr(MLKDates)

MLKDays =

15-Jan-2001
21-Jan-2002
20-Jan-2003
19-Jan-2004
2-9
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Accounting for holidays and other nontrading days is important when 
examining financial dates. The toolbox provides the holidays function, which 
contains holidays and special nontrading days for the New York Stock 
Exchange between 1950 and 2030, inclusive. You can edit the holidays.m file 
to customize it with your own holidays and nontrading days. In this example, 
use it to determine the standard holidays in the last half of 2000.

LHHDates = holidays('1-Jul-2000', '31-Dec-2000');

LHHDays = datestr(LHHDates)

LHHDays =

04-Jul-2000
04-Sep-2000
23-Nov-2000
25-Dec-2000

Now use the toolbox busdate function to determine the next business day after 
these holidays.

LHNextDates = busdate(LHHDates);

LHNextDays = datestr(LHNextDates)

LHNextDays =

05-Jul-2000
05-Sep-2000
24-Nov-2000
26-Dec-2000
0



Handling and Converting Dates
The toolbox also provides the cfdates function to determine cash-flow dates for 
securities with periodic payments. This function accounts for the coupons per 
year, the day-count basis, and the end-of-month rule. For example, to 
determine the cash-flow dates for a security that pays four coupons per year on 
the last day of the month, on an actual/365 day-count basis, just enter the 
settlement date, the maturity date, and the parameters.

PayDates = cfdates('14-Mar-2000', '30-Nov-2001', 4, 3, 1);

PayDays = datestr(PayDates)

PayDays =

31-May-2000
31-Aug-2000
30-Nov-2000
28-Feb-2001
31-May-2001
31-Aug-2001
30-Nov-2001
2-11
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Formatting Currency 
The Financial Toolbox provides several functions to format currency and chart 
financial data. 

These examples show their use.

Dec = frac2cur('12.1', 8)

returns Dec = 12.125, which is the decimal equivalent of 12-1/8. The second 
input variable is the denominator of the fraction.

Str =  cur2str(-8264, 2)

returns the string ($8264.00). For this toolbox function, the output format is 
a numerical format with dollar sign prefix, two decimal places, and negative 
numbers in parentheses; e.g., ($123.45) and $6789.01. The standard 
MATLAB bank format uses two decimal places, no dollar sign, and a minus 
sign for negative numbers; e.g., -123.45 and 6789.01.

cur2frac Converts decimal currency values to fractional values

cur2str Converts a value to Financial Toolbox bank format

frac2cur Converts fractional currency values to decimal values
2
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Charting Financial Data
The following toolbox financial charting functions plot financial data and 
produce presentation-quality figures quickly and easily.

These functions work with standard MATLAB functions that draw axes, 
control appearance, and add labels and titles. For users having additional 
charting requirements, the Financial Time Series Toolbox provides a more 
comprehensive set of charting functions.

Here are two plotting examples: a high-low-close chart of sample IBM stock 
price data, and a Bollinger band chart of the same data. These examples load 
data from an external file (ibm.dat), then call the functions using subsets of the 
data. ibm is a six-column matrix where each row is a trading day’s data and 
where columns 2, 3, and 4 contain the high, low, and closing prices, 
respectively.

Note  The data in ibm.dat is fictional and for illustrative use only.

High-Low-Close Chart Example
First load the data and set up matrix dimensions. load and size are standard 
MATLAB functions.

load ibm.dat;
[ro, co] = size(ibm);

Open a figure window for the chart. Use the Financial Toolbox highlow 
function to plot high, low, and close prices for the last 50 trading days in the 
data file.

bolling Bollinger band chart

candle Candlestick chart

pointfig Point and figure chart

highlow High, low, open, close chart

movavg Leading and lagging moving averages chart
2-13
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figure;
highlow(ibm(ro−50:ro,2),ibm(ro−50:ro,3),ibm(ro−50:ro,4),[],'b');

Add labels and title, and set axes with standard MATLAB functions. Use the 
Financial Toolbox dateaxis function to provide dates for the x-axis ticks.

xlabel('');
ylabel('Price ($)');
title('International Business Machines, 941231 - 950219');
axis([0 50 −inf inf]);
dateaxis('x',6,'31-Dec-1994')

MATLAB produces a figure similar to this. The plotted data and axes you see 
may differ. Viewed online, the high-low-close bars are blue.
 

Bollinger Chart Example
Next the Financial Toolbox bolling function produces a Bollinger band chart 
using all the closing prices in the same IBM stock price matrix. A Bollinger 
band chart plots actual data along with three other bands of data. The upper 
4
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band is two standard deviations above a moving average; the lower band is two 
standard deviations below that moving average; and the middle band is the 
moving average itself. This example uses a 15-day moving average.

Assuming the previous IBM data is still loaded, simply execute the Financial 
Toolbox function.

bolling(ibm(:,4), 15, 0);

Specify the axes, labels, and titles. Again, use dateaxis to add the x-axis dates.

axis([0 ro min(ibm(:,4)) max(ibm(:,4))]);
ylabel('Price ($)');
title(['International Business Machines']);
dateaxis('x', 6,'31-Dec-1994')

.

For help using MATLAB plotting functions, see “Creating Plots” in the 
MATLAB documentation. See the MATLAB documentation for details on the 
axis, title, xlabel, and ylabel functions.
2-15
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Analyzing and Computing Cash Flows
The Financial Toolbox cash-flow functions compute interest rates, rates of 
return, present or future values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment of 
$20,000 followed by three annual return payments, a second investment of 
$5,000, then four more returns. Investments are negative cash flows, return 
payments are positive cash flows.

Stream = [-20000,  2000,  2500,  3500, -5000,  6500,...
9500,  9500,  9500];

Interest Rates/Rates of Return
Several functions calculate interest rates involved with cash flows. To compute 
the internal rate of return of the cash stream, simply execute the toolbox 
function irr

ROR = irr(Stream)

which gives a rate of return of 11.72%.

Note that the internal rate of return of a cash flow may not have a unique 
value. Every time the sign changes in a cash flow, the equation defining irr 
can give up to two additional answers. An irr computation requires solving a 
polynomial equation, and the number of real roots of such an equation can 
depend on the number of sign changes in the coefficients. The equation for 
internal rate of return is

where Investment is a (negative) initial cash outlay at time 0, cfn is the cash 
flow in the nth period, and n is the number of periods. Basically, irr finds the 
rate r such that the net present value of the cash flow equals the initial 
investment. If all of the cfns are positive there is only one solution. Every time 
there is a change of sign between coefficients, up to two additional real roots 
are possible. There is usually only one answer that makes sense, but it is 
possible to get returns of both 5% and 11% (for example) from one income 
stream.

cf1

1 r+( )
-------------------

cf2

1 r+( )2
-------------------- …

cfn

1 r+( )n
--------------------  Investment+ + + + 0=
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Another toolbox rate function, effrr, calculates the effective rate of return 
given an annual interest rate (also known as nominal rate or annual 
percentage rate, APR) and number of compounding periods per year. To find 
the effective rate of a 9% APR compounded monthly, simply enter

Rate = effrr(0.09, 12)

The answer is 9.38%.

A companion function nomrr computes the nominal rate of return given the 
effective annual rate and the number of compounding periods.

Present or Future Values
The toolbox includes functions to compute the present or future value of cash 
flows at regular or irregular time intervals with equal or unequal payments:  
fvfix, fvvar, pvfix, and pvvar.  The -fix functions assume equal cash flows 
at regular intervals, while the -var functions allow irregular cash flows at 
irregular periods.

Now compute the net present value of the sample income stream for which you 
computed the internal rate of return.  This exercise also serves as a check on 
that calculation because the net present value of a cash stream at its internal 
rate of return should be zero.  Enter

NPV = pvvar(Stream, ROR)

which returns an answer very close to zero. The answer usually is not exactly 
zero due to rounding errors and the computational precision of the computer.

Note  Other toolbox functions behave similarly. The functions that compute a 
bond’s yield, for example, often must solve a nonlinear equation. If you then 
use that yield to compute the net present value of the bond’s income stream, it 
usually does not exactly equal the purchase price — but the difference is 
negligible for practical applications.
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Depreciation
The toolbox includes functions to compute standard depreciation schedules:  
straight line, general declining-balance, fixed declining-balance, and sum of 
years’ digits.  Functions also compute a complete amortization schedule for an 
asset, and return the remaining depreciable value after a depreciation 
schedule has been applied. 

This example depreciates an automobile worth $15,000 over five years with a 
salvage value of $1,500.  It computes the general declining balance using two 
different depreciation rates:  50% (or 1.5), and 100% (or 2.0, also known as 
double declining balance).  Enter

Decline1 = depgendb(15000, 1500, 5, 1.5)
Decline2 = depgendb(15000, 1500, 5, 2.0)

which returns

Decline1 =
       4500.00       3150.00       2205.00       1543.50       2101.50
Decline2 =
       6000.00       3600.00       2160.00       1296.00        444.00

These functions return the actual depreciation amount for the first four years 
and the remaining depreciable value as the entry for the fifth year.

Annuities
Several toolbox functions deal with annuities. This first example shows how to 
compute the interest rate associated with a series of loan payments when only 
the payment amounts and principal are known. For a loan whose original value 
was $5000.00 and which was paid back monthly over four years at 
$130.00/month

Rate = annurate(4*12, 130, 5000, 0, 0)

The function returns a rate of 0.0094 monthly, or approximately 11.28% 
annually.
8
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The next example uses a present-value function to show how to compute the 
initial principal when the payment and rate are known. For a loan paid at 
$300.00/month over four years at 11% annual interest

Principal = pvfix(0.11/12, 4*12, 300, 0, 0)

The function returns the original principal value of $11,607.43.

The final example computes an amortization schedule for a loan or annuity.  
The original value was $5000.00 and was paid back over 12 months at an 
annual rate of 9%.

[Prpmt, Intpmt, Balance, Payment] = ...
amortize(0.09/12, 12, 5000, 0, 0);

This function returns vectors containing the amount of principal paid,

Prpmt = [399.76 402.76  405.78  408.82  411.89  414.97  
418.09 421.22  424.38  427.56  430.77  434.00]

the amount of interest paid,

Intpmt = [37.50 34.50  31.48  28.44  25.37  22.28  
19.17 16.03  12.88   9.69   6.49   3.26]

the remaining balance for each period of the loan,

Balance = [4600.24  4197.49  3791.71  3382.89  2971.01 
2556.03  2137.94  1716.72  1292.34   864.77 
 434.00    0.00]

and a scalar for the monthly payment.

Payment = 437.26
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Pricing and Computing Yields for Fixed-Income Securities
The Securities Industry Association (SIA) has established conventions 
regarding bond pricing, yield calculation and quotation, time factors and 
accrued interest, coupon and quasi-coupon dates, and duration and convexity 
sensitivity measures. The Financial Toolbox includes SIA-compliant functions 
to compute accrued interest, determine prices and yields, as well as calculate 
convexity and duration of fixed-income securities. It also includes a set of 
functions to generate and analyze term structure of interest rates.

SIA-compliant functions can be used with U.S. Treasury bills, bonds, and 
notes; corporate bonds; and municipal bonds. Bonds can have long, normal or 
short first or last coupon periods. 

The online Function Reference identifies SIA-compliant functions. These 
functions have been thoroughly tested against the benchmarks found in Jan 
Mayle’s book listed in Appendix A, “Bibliography.”

Terminology
Since terminology varies among texts on this subject, here are some basic 
definitions that apply to these Financial Toolbox functions. The Glossary 
contains additional definitions.

The settlement date of a bond is the date when money first changes hands; i.e., 
when a buyer pays for a bond. It need not coincide with the issue date, which is 
the date a bond is first offered for sale. 

The first coupon date and last coupon date are the dates when the first and last 
coupons are paid, respectively. Although bonds typically pay periodic annual or 
semiannual coupons, the length of the first and last coupon periods may differ 
from the standard coupon period. The toolbox includes price and yield functions 
that handle these odd first and/or last periods.

Successive quasi-coupon dates determine the length of the standard coupon 
period for the fixed income security of interest, and do not necessarily coincide 
with actual coupon payment dates. The toolbox includes functions that 
calculate both actual and quasi-coupon dates for bonds with odd first and/or 
last periods.

Fixed-income securities can be purchased on dates that do not coincide with 
coupon payment dates. In this case, the bond owner is not entitled to the full 
value of the coupon for that period. When a bond is purchased between coupon 
0
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dates, the buyer must compensate the seller for the pro-rata share of the 
coupon interest earned from the previous coupon payment date. This pro-rata 
share of the coupon payment is called accrued interest. The purchase price, the 
price actually paid for a bond, is the quoted market price plus accrued interest.

The maturity date of a bond is the date when the issuer returns the final face 
value, also known as the redemption value or par value, to the buyer. The 
yield-to-maturity of a bond is the nominal compound rate of return that equates 
the present value of all future cash flows (coupons and principal) to the current 
market price of the bond.

The period of a bond refers to the frequency with which the issuer of a bond 
makes coupon payments to the holder. 

The basis of a bond refers to the basis or day-count convention for a bond. Basis 
is normally expressed as a fraction in which the numerator determines the 
number of days between two dates, and the denominator determines the 
number of days in the year. For example, the numerator of actual/actual 
means that when determining the number of days between two dates, count 
the actual number of days; the denominator means that you use the actual 
number of days in the given year in any calculations (either 365 or 366 days 
depending on whether or not the given year is a leap year).

Table 2-1:  Period of a Bond

Period Value Payment Schedule

0 No coupons. (Zero coupon bond.)

1 Annual

2 Semiannual

3 Tri-annual

4 Quarterly

6 Bi-monthly

12 Monthly
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Table 2-2:  Basis of a Bond

Basis 
Value

Meaning Description

0 (default) actual/actual Actual days held over actual 
days in coupon period. 
Denominator is 365 in most 
years and 366 in a leap year.

1 30/360 (SIA) Each month contains 30 days; 
a year contains 360 days. 
Payments are adjusted for 
bonds that pay coupons on the 
last day of February.

2 actual/360 Actual days held over 360.

3 actual/365 Actual days held over 365, 
even in leap years.

4 30/360 PSA (Public 
Securities Association)

Each month contains 30 days; 
a year contains 360 days. If 
the last date of the period is 
the last day of February, the 
month is extended to 30 days.

5 30/360 ISDA (International 
Swap Dealers Association)

Variant of 30/360 with slight 
differences for calculating 
number of days in a month.

6 30/360 European Variant of 30/360 used 
primarily in Europe.

7 actual/365 Japanese All years contain 365 days. 
Leap days are ignored.
2
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Note  Although the concept of day count sounds deceptively simple, the 
actual calculation of day counts can be quite complex. You can find a good 
discussion of day counts and the formulas for calculating them in Chapter 5 of 
Stigum and Robinson, Money Market and Bond Calculations.

The end-of-month rule affects a bond's coupon payment structure. When the 
rule is in effect, a security that pays a coupon on the last actual day of a month 
will always pay coupons on the last day of the month. This means, for example, 
that a semiannual bond that pays a coupon on February 28 in nonleap years 
will pay coupons on August 31 in all years and on February 29 in leap years. 

SIA Framework
Many of the fixed-income related functions in the Financial Toolbox comply 
with the Securities Industry Association (SIA) conventions. Although not all 
SIA-compliant functions require the same input arguments, they all accept the 
following common set of input arguments.

Table 2-3:  End-of-Month Rule

End of Month Rule 
Value

Meaning

1 (default) Rule in effect.

0 Rule not in effect.

Table 2-4:  SIA Common Input Arguments

Input Meaning

Settle Settlement date

Maturity Maturity date

Period Coupon payment period

Basis Day-count basis
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Of the common input arguments, only Settle and Maturity are required. All 
others are optional. They will be set to the default values if you do not explicitly 
set them. Note that, by default, the FirstCouponDate and LastCouponDate are 
nonapplicable. In other words, if you do not specify FirstCouponDate and 
LastCouponDate, the bond is assumed to have no odd first or last coupon 
periods. In this case, the bond is simply a standard bond with a coupon 
payment structure based solely on the maturity date.

SIA Default Parameter Values
To illustrate the use of default values in SIA-compliant functions, consider the 
cfdates function, which computes actual cash flow payment dates for a 
portfolio of fixed income securities regardless of whether the first and/or last 
coupon periods are normal, long, or short.

The complete calling syntax with the full input argument list is

CFlowDates = cfdates(Settle, Maturity, Period, Basis, ... 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

while the minimal calling syntax requires only settlement and maturity dates

CFlowDates = cfdates(Settle, Maturity)

Single Bond Example
As an example, suppose you have a bond with these characteristics.

Settle          = '20-Sep-1999'
Maturity        = '15-Oct-2007'
Period          = 2
Basis           = 0
EndMonthRule    = 1

EndMonthRule End-of-month payment rule

IssueDate Bond issue date

FirstCouponDate First coupon payment date

LastCouponDate Last coupon payment date

Table 2-4:  SIA Common Input Arguments (Continued)

Input Meaning
4



Pricing and Computing Yields for Fixed-Income Securities
IssueDate       = NaN
FirstCouponDate = NaN
LastCouponDate  = NaN

Note that Period, Basis, and EndMonthRule are set to their default values, and 
IssueDate, FirstCouponDate, and LastCouponDate are set to NaN. 

Formally, a NaN is an IEEE arithmetic standard for Not-a-Number and is used 
to indicate the result of an undefined operation (e.g., zero divided by zero). 
However, NaN is also a very convenient placeholder. In the SIA functions of the 
Financial Toolbox, NaN indicates the presence of a nonapplicable value. It tells 
the SIA fixed-income functions to ignore the input value and apply the default. 
Setting IssueDate, FirstCouponDate, and LastCouponDate to NaN in this 
example tells cfdates to assume that the bond has been issued prior to 
settlement and that no odd first or last coupon periods exist.

Having set these values, all these calls to cfdates produce the same result.

cfdates(Settle, Maturity)
cfdates(Settle, Maturity, Period)
cfdates(Settle, Maturity, Period, [])
cfdates(Settle, Maturity, [], Basis)
cfdates(Settle, Maturity, [], [])
cfdates(Settle, Maturity, Period, [], EndMonthRule)
cfdates(Settle, Maturity, Period, [], NaN)
cfdates(Settle, Maturity, Period, [], [], IssueDate)
cfdates(Settle, Maturity, Period, [], [], IssueDate, [], [])
cfdates(Settle, Maturity, Period, [], [], [], [],LastCouponDate)
cfdates(Settle, Maturity, Period, Basis, EndMonthRule, ... 
IssueDate, FirstCouponDate, LastCouponDate)

Thus, leaving a particular input unspecified has the same effect as passing an 
empty matrix ([]) or passing a NaN – all three tell cfdates (and other 
SIA-compliant functions) to use the default value for a particular input 
parameter.

Bond Portfolio Example
Since the previous example included only a single bond, there was no difference 
between passing an empty matrix or passing a NaN for an optional input 
argument. For a portfolio of bonds, however, using NaN as a placeholder is the 
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only way to specify default acceptance for some bonds while explicitly setting 
nondefault values for the remaining bonds in the portfolio.

Now suppose you have a portfolio of two bonds.

Settle   = '20-Sep-1999'
Maturity = ['15-Oct-2007'; '15-Oct-2010']

These calls to cfdates all set the coupon period to its default value 
(Period = 2) for both bonds.

cfdates(Settle, Maturity, 2)
cfdates(Settle, Maturity, [2 2])
cfdates(Settle, Maturity, [])
cfdates(Settle, Maturity, NaN)
cfdates(Settle, Maturity, [NaN NaN])
cfdates(Settle, Maturity)

The first two calls explicitly set Period = 2. Since Maturity is a 2-by-1 vector 
of maturity dates, cfdates knows you have a two-bond portfolio. 

The first call specifies a single (i.e., scalar) 2 for Period. Passing a scalar tells 
cfdates to apply the scalar-valued input to all bonds in the portfolio. This is an 
example of implicit scalar-expansion. Note that the settlement date has been 
implicit scalar-expanded as well. 

The second call also applies the default coupon period by explicitly passing a 
two-element vector of 2’s. The third call passes an empty matrix, which 
cfdates interprets as an invalid period, for which the default value will be 
used. The fourth call is similar, except that a NaN has been passed. The fifth call 
passes two NaN’s, and has the same effect as the third. The last call passes the 
minimal input set.
6
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Finally, consider the following calls to cfdates for the same two-bond portfolio.

cfdates(Settle, Maturity, [4 NaN])
cfdates(Settle, Maturity, [4 2])

The first call explicitly sets Period = 4 for the first bond and implicitly sets the 
default Period = 2 for the second bond. The second call has the same effect as 
the first but explicitly sets the periodicity for both bonds.

The optional input Period has been used for illustrative purpose only. The 
default-handling process illustrated in the examples applies to any of the 
optional input arguments.

SIA Coupon Date Calculations
Calculating coupon dates, either actual or quasi dates, is notoriously 
complicated. The Financial Toolbox follows the SIA conventions in coupon date 
calculations.

The first step in finding the coupon dates associated with a bond is to 
determine the reference, or synchronization date (the sync date). Within the 
SIA framework, the order of precedence for determining the sync date is (1) the 
first coupon date, (2) the last coupon date, and finally (3) the maturity date.

In other words, an SIA-compliant function in the Financial Toolbox first 
examines the FirstCouponDate input. If FirstCouponDate is specified, coupon 
payment dates and quasi-coupon dates are computed with respect to 
FirstCouponDate; if FirstCouponDate is unspecified, empty ([]), or NaN, then 
the LastCouponDate is examined. If LastCouponDate is specified, coupon 
payment dates and quasi-coupon dates are computed with respect to 
LastCouponDate. If both FirstCouponDate and LastCouponDate are 
unspecified, empty ([]), or NaN, the Maturity (a required input argument) 
serves as the sync date.

SIA Semiannual Yield Conventions
Within the SIA framework, all yields and time factors for price-to-yield 
conversion are quoted on a semiannual bond basis (see bndprice, bndyield, 
and cfamounts) regardless of the period of the bond’s coupon payments 
(including zero-coupon bonds). In addition, any yield-related sensitivity (i.e., 
duration and convexity), when quoted on a periodic basis, assumes semiannual 
coupon periods. (See bndconvp, bndconvy, bnddurp, and bnddury).
2-27



2 Tutorial

2-2
Pricing Functions
This example shows how easily you can compute the price of a bond with an odd 
first period using the SIA-compliant function bndprice. Assume you have a 
bond with these characteristics.

Settle          = '11-Nov-1992';
Maturity        = '01-Mar-2005';
IssueDate       = '15-Oct-1992';
FirstCouponDate = '01-Mar-1993';
CouponRate      = 0.0785;
Yield           = 0.0625;

Allow coupon payment period (Period = 2), day-count basis (Basis = 0), and 
end-of-month rule (EndMonthRule = 1) to assume the default values. Also, 
assume there is no odd last coupon date and that the face value of the bond is 
$100. Calling the function

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, ... 
Maturity, [], [], [], IssueDate, FirstCouponDate)

returns a price of $113.60 and accrued interest of $0.59. 

Similar functions compute prices with regular payments, odd first and last 
periods, as well as prices of Treasury bills and discounted securities such as 
zero-coupon bonds.

Note  bndprice and other SIA-compliant functions use nonlinear formulas to 
compute the price of a security. For this reason, the Financial Toolbox uses 
Newton’s method when solving for an independent variable within a formula. 
See any elementary numerical methods textbook for the mathematics 
underlying Newton’s method.

Yield Functions
To illustrate toolbox yield functions, compute the yield of a bond that has odd 
first and last periods and settlement in the first period. First set up variables 
for settlement, maturity date, issue, first coupon, and a last coupon date.

Settle          = '12-Jan-2000';
Maturity        = '01-Oct-2001';
8
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IssueDate       = '01-Jan-2000';
FirstCouponDate = '15-Jan-2000';
LastCouponDate  = '15-Apr-2000';

Assume a face value of $100. Specify a purchase price of $95.70, a coupon rate 
of 4%, quarterly coupon payments, and a 30/360 day-count convention (Basis 
= 1). 

Price        = 95.7;
CouponRate   = 0.04;
Period       = 4;
Basis        = 1;
EndMonthRule = 1;

Calling the function

Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,... 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

returns

Yield = 0.0659 (6.60%).

Fixed-Income Sensitivities
The toolbox includes SIA-compliant functions to perform sensitivity analysis 
such as convexity and the Macaulay and modified durations for fixed-income 
securities. The Macaulay duration of an income stream, such as a coupon bond, 
measures how long, on average, the owner waits before receiving a payment. It 
is the weighted average of the times payments are made, with the weights at 
time T equal to the present value of the money received at time T. The modified 
duration is the Macaulay duration discounted by the per-period interest rate; 
i.e., divided by (1+rate/frequency). 

To illustrate, the following example computes the annualized Macaulay and 
modified durations, and the periodic Macaulay duration for a bond with 
settlement (12-Jan-2000) and maturity (01-Oct-2001) dates as above, a 5% 
coupon rate, and a 4.5% yield to maturity. For simplicity, any optional input 
arguments assume default values (i.e., semiannual coupons, and day-count 
basis = 0 (actual/actual), coupon payment structure synchronized to the 
maturity date, and end-of-month payment rule in effect).

CouponRate = 0.05;
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Yield = 0.045;

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,... 
CouponRate, Settle, Maturity)

The durations are

ModDuration  = 1.6107 (years)
YearDuration = 1.6470 (years)
PerDuration  = 3.2940 (semiannual periods)

Note that the semiannual periodic Macaulay duration (PerDuration) is twice 
the annualized Macaulay duration (YearDuration).

Term Structure of Interest Rates
The toolbox contains several functions to derive and analyze interest rate 
curves, including data conversion and extrapolation, bootstrapping, and 
interest-rate curve conversion functions.

One of the first problems in analyzing the term structure of interest rates is 
dealing with market data reported in different formats. Treasury bills, for 
example, are quoted with bid and asked bank-discount rates. Treasury notes 
and bonds, on the other hand, are quoted with bid and asked prices based on 
$100 face value. To examine the full spectrum of Treasury securities, analysts 
must convert data to a single format. Toolbox functions ease this conversion. 
This brief example uses only one security each; analysts often use 30, 100, or 
more of each.

First, capture Treasury bill quotes in their reported format

% Maturity               Days  Bid     Ask     AskYield
TBill = [datenum('12/26/2000')  53    0.0503  0.0499  0.0510];

and then capture Treasury bond quotes in their reported format

% Coupon   Maturity           Bid       Ask       AskYield
TBond = [0.08875  datenum(2001,11,5) 103+4/32  103+6/32  0.0564];

and note that these quotes are based on a November 3, 2000 settlement date.

Settle = datenum('3-Nov-2000');
0
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Next use the toolbox tbl2bond function to convert the Treasury bill data to 
Treasury bond format.

TBTBond = tbl2bond(TBill)

TBTBond =
         0 730846 99.26 99.27 0.05

(The second element of TBTBond is the serial date number for December 26, 
2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data 
to set up the overall term structure.

TBondsAll = [TBTBond; TBond]

TBondsAll =
            0 730846 99.26 99.27 0.05
      0.09 731160 103.13 103.19 0.06

The toolbox provides a second data-preparation function,tr2bonds, to convert 
the bond data into a form ready for the bootstrapping functions. tr2bonds 
generates a matrix of bond information sorted by maturity date, plus vectors of 
prices and yields.

[Bonds, Prices, Yields] = tr2bonds(TBondsAll);

With this market data, you are now ready to use one of the toolbox 
bootstrapping functions to derive an implied zero curve. Bootstrapping is a 
process whereby you begin with known data points and solve for unknown data 
points using an underlying arbitrage theory. Every coupon bond can be valued 
as a package of zero-coupon bonds which mimic its cash flow and risk 
characteristics. By mapping yields-to-maturity for each theoretical 
zero-coupon bond, to the dates spanning the investment horizon, you can create 
a theoretical zero-rate curve. 

The toolbox provides two bootstrapping functions. zbtprice derives a zero 
curve from bond data and prices, and zbtyield derives a zero curve from bond 
data and yields. Using zbtprice
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[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)

ZeroRates =

     0.05
     0.06

CurveDates =

      730846
      731160

CurveDates gives the investment horizon.

datestr(CurveDates)

ans =

26-Dec-2000
05-Nov-2001

Additional toolbox functions construct discount, forward, and par yield curves 
from the zero curve, and vice versa.

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,... 
Settle);
[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);
[PYldRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,... 
Settle);
2
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Pricing and Analyzing Equity Derivatives
These toolbox functions compute prices, sensitivities, and profits for portfolios 
of options or other equity derivatives. They use the Black-Scholes model for 
European options and the binomial model for American options. Such 
measures are useful for managing portfolios and for executing collars, hedges, 
and straddles.

Sensitivity Measures
There are six basic sensitivity measures associated with option pricing:  delta, 
gamma, lambda, rho, theta, and vega — the “greeks.”  The toolbox provides 
functions for calculating each sensitivity and for implied volatility.

Delta
Delta of a derivative security is the rate of change of its price relative to the 
price of the underlying asset. It is the first derivative of the curve that relates 
the price of the derivative to the price of the underlying security. When delta is 
large, the price of the derivative is sensitive to small changes in the price of the 
underlying security.

Gamma
Gamma of a derivative security is the rate of change of delta relative to the 
price of the underlying asset; i.e., the second derivative of the option price 
relative to the security price. When gamma is small, the change in delta is 
small. This sensitivity measure is important for deciding how much to adjust a 
hedge position.

Lambda
Lambda, also known as the elasticity of an option, represents the percentage 
change in the price of an option relative to a 1% change in the price of the 
underlying security.

Rho
Rho is the rate of change in option price relative to the risk-free interest rate.
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Theta
Theta is the rate of change in the price of a derivative security relative to time.  
Theta is usually very small or negative since the value of an option tends to 
drop as it approaches maturity.

Vega
Vega is the rate of change in the price of a derivative security relative to the 
volatility of the underlying security. When vega is large the security is 
sensitive to small changes in volatility. For example, options traders often 
must decide whether to buy an option to hedge against vega or gamma. The 
hedge selected usually depends upon how frequently one rebalances a hedge 
position and also upon the standard deviation of the price of the underlying 
asset (the volatility). If the standard deviation is changing rapidly, balancing 
against vega is usually preferable.

Implied Volatility
The implied volatility of an option is the standard deviation that makes an 
option price equal to the market price. It helps determine a market estimate 
for the future volatility of a stock and provides the input volatility (when 
needed) to the other Black-Scholes functions.

Analysis Models
Toolbox functions for analyzing equity derivatives use the Black-Scholes model 
for European options and the binomial model for American options. The 
Black-Scholes model makes several assumptions about the underlying 
securities and their behavior. The binomial model, on the other hand, makes 
far fewer assumptions about the processes underlying an option. For further 
explanation, see John Hull’s book listed in Appendix A, “Bibliography.”

Black-Scholes Model
Using the Black-Scholes model entails several assumptions:

• The prices of the underlying asset follow an Ito process. (See Hull, page 222.)

• The option can be exercised only on its expiration date (European option).

• Short selling is permitted.

• There are no transaction costs.

• All securities are divisible.
4
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• There is no riskless arbitrage.

• Trading is a continuous process.

• The risk-free interest rate is constant and remains the same for all 
maturities.

If any of these assumptions is untrue, Black-Scholes may not be an appropriate 
model.

To illustrate toolbox Black-Scholes functions, this example computes the call 
and put prices of a European option and its delta, gamma, lambda, and implied 
volatility. The asset price is $100.00, the exercise price is $95.00, the risk-free 
interest rate is 10%, the time to maturity is 0.25 years, the volatility is 0.50, 
and the dividend rate is 0. Simply executing the toolbox functions

[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0);
[CallVal, PutVal] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0);
GammaVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0);
VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0);
[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0);

yields:

• The option call price OptCall = $13.70 

• The option put price OptPut = $6.35

• delta for a call CallVal = 0.6665 and delta for a put PutVal = −0.3335

• gamma GammaVal = 0.0145

• vega VegaVal = 18.1843

• lambda for a call LamCall = 4.8664 and lambda for a put LamPut = –5.2528

Now as a computation check, find the implied volatility of the option using the 
call option price from blsprice.

Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall);

The function returns an implied volatility of 0.500, the original blsprice input.

Binomial Model
The binomial model for pricing options or other equity derivatives assumes 
that the probability over time of each possible price follows a binomial 
distribution.  The basic assumption is that prices can move to only two values, 
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one up and one down, over any short time period.  Plotting the two values, and 
then the subsequent two values each, and then the subsequent two values 
each, and so on over time, is known as “building a binomial tree.”  This model 
applies to American options, which can be exercised any time up to and 
including their expiration date.

This example prices an American call option using a binomial model.  Again, 
the asset price is $100.00, the exercise price is $95.00, the risk-free interest 
rate is 10%, and the time to maturity is 0.25 years.  It computes the tree in 
increments of 0.05 years, so there are 0.25/0.05 = 5 periods in the example.  The 
volatility is 0.50, this is a call (flag = 1), the dividend rate is 0, and it pays a 
dividend of $5.00 after three periods (an ex-dividend date).  Executing the 
toolbox function

[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,... 
0.05,  0.50, 1, 0, 5.0, 3);

returns the tree of prices of the underlying asset

StockPrice =

100.00 111.27 123.87 137.96 148.69 166.28
 0 89.97 100.05 111.32 118.90 132.96

0 0 81.00 90.02 95.07 106.32
0 0 0 72.98 76.02 85.02
0 0 0 0 60.79 67.98
0 0 0 0 0 54.36

and the tree of option values.

OptionPrice =

12.10 19.17 29.35 42.96 54.17 71.28
0 5.31 9.41 16.32 24.37 37.96
0 0 1.35 2.74 5.57 11.32
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The output from the binomial function is a binary tree. Read the StockPrice 
matrix this way: column 1 shows the price for period 0, column 2 shows the up 
and down prices for period 1, column 3 shows the up-up, up-down, and 
down-down prices for period 2, etc. Ignore the zeros. The OptionPrice matrix 
6
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gives the associated option value for each node in the price tree. Ignore the 
zeros that correspond to a zero in the price tree.
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Portfolio Analysis

Analyzing Portfolios (p. 3-2) Managing risk and return.

Portfolio Optimization Functions 
(p. 3-3)

Tables of functions for portfolio optimization.

Portfolio Construction Examples 
(p. 3-5)

Constructing portfolios on the efficient frontier.

Portfolio Selection and Risk Aversion 
(p. 3-8)

Controlling portfolio risk.

Constraint Specification (p. 3-12) Managing portfolio constraints.

Active Returns and Tracking Error 
Efficient Frontier (p. 3-20)

Minimize the variance of the difference in returns with 
respect to a given target portfolio.

Portfolios with Missing Data (p. 3-24) Finding mean and covariance of data with missing 
elements.
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Analyzing Portfolios
Portfolio managers concentrate their efforts on achieving the best possible 
trade-off between risk and return. For portfolios constructed from a fixed set of 
assets, the risk/return profile varies with the portfolio composition. Portfolios 
that maximize the return, given the risk, or, conversely, minimize the risk for 
the given return, are called optimal. Optimal portfolios define a line in the 
risk/return plane called the efficient frontier.

A portfolio may also have to meet additional requirements to be considered. 
Different investors have different levels of risk tolerance. Selecting the 
adequate portfolio for a particular investor is a difficult process. The portfolio 
manager can hedge the risk related to a particular portfolio along the efficient 
frontier with partial investment in risk-free assets. The definition of the capital 
allocation line, and finding where the final portfolio falls on this line, if at all, 
is a function of

• The risk/return profile of each asset 

• The risk-free rate

• The borrowing rate

• The degree of risk aversion characterizing an investor 

The Financial Toolbox includes a set of portfolio optimization functions 
designed to find the portfolio that best meets investor requirements.



Portfolio Optimization Functions
Portfolio Optimization Functions
The portfolio optimization functions assist portfolio managers in constructing 
portfolios that optimize risk and return. 

Capital Allocation

portalloc Computes the optimal risky portfolio on the efficient frontier, 
based on the risk-free rate, the borrowing rate, and the 
investor's degree of risk aversion. Also generates the capital 
allocation line, which provides the optimal allocation of funds 
between the risky portfolio and the risk-free asset.

Efficient Frontier Computation

frontcon Computes portfolios along the efficient frontier for a given 
group of assets. The computation is based on sets of 
constraints representing the maximum and minimum weights 
for each asset, and the maximum and minimum total weight 
for specified groups of assets.

portopt Computes portfolios along the efficient frontier for a given 
group of assets. The computation is based on a set of 
user-specified linear constraints. Typically, these constraints 
are generated using the constraint specification functions 
described below.

Constraint Specification 

portcons Generates the portfolio constraints matrix for a portfolio of 
asset investments using linear inequalities. The inequalities 
are of the type A*Wts' <= b, where Wts is a row vector of 
weights. The capabilities of portcons are also provided 
individually by the following functions. 
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Constraint Specification (continued)

pcalims Asset minimum and maximum allocation. 
Generates a constraint set to fix the minimum and 
maximum weight for each individual asset.

pcgcomp Group-to-group ratio constraint. Generates a 
constraint set specifying the maximum and 
minimum ratios between pairs of groups.

pcglims Asset group minimum and maximum allocation. 
Generates a constraint set to fix the minimum and 
maximum total weight for each defined group of 
assets.

pcpval Total portfolio value. Generates a constraint set to 
fix the total value of the portfolio. 

Constraint Conversion

abs2active Transforms a constraint matrix expressed in absolute 
weight format to an equivalent matrix expressed in 
active weight format.

active2abs Transforms a constraint matrix expressed in active 
weight format to an equivalent matrix expressed in 
absolute weight format.
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Portfolio Construction Examples
The efficient frontier computation functions require information about each 
asset in the portfolio. This data is entered into the function via two matrices: 
an expected return vector and a covariance matrix. The expected return vector 
contains the average expected return for each asset in the portfolio. The 
covariance matrix is a square matrix representing the interrelationships 
between pairs of assets. This information can be directly specified or can be 
estimated from an asset return time series with the function ewstats.

Efficient Frontier Example
This example computes the efficient frontier of portfolios consisting of three 
different assets using the function frontcon. To visualize the efficient frontier 
curve clearly, consider 10 different evenly spaced portfolios. 

Assume that the expected return of the first asset is 10%, the second is 20%, 
and the third is 15%. The covariance is defined in the matrix ExpCovariance.

ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance  = [ 0.005   -0.010    0.004;
                 -0.010    0.040   -0.002;
                  0.004   -0.002    0.023];

NumPorts = 10;

Since there are no constraints, you can call frontcon directly with the data you 
already have. If you call frontcon without specifying any output arguments, 
you get a graph representing the efficient frontier curve.

frontcon (ExpReturn, ExpCovariance, NumPorts);
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Calling frontcon while specifying the output arguments returns the 
corresponding vectors and arrays representing the risk, return, and weights for 
each of the 10 points computed along the efficient frontier.

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,... 
ExpCovariance, NumPorts)
PortRisk =
    0.0392
    0.0445
    0.0559
    0.0701
    0.0858
    0.1023
    0.1192
    0.1383
    0.1661
    0.2000
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PortReturn =

    0.1231
    0.1316
    0.1402
    0.1487
    0.1573
    0.1658
    0.1744
    0.1829
    0.1915
    0.2000

PortWts =

    0.7692    0.2308    0.0000
    0.6667    0.2991    0.0342
    0.5443    0.3478    0.1079
    0.4220    0.3964    0.1816
    0.2997    0.4450    0.2553
    0.1774    0.4936    0.3290
    0.0550    0.5422    0.4027
         0    0.6581    0.3419
         0    0.8291    0.1709
         0    1.0000    0.0000

The output data is represented row-wise. Each portfolio’s risk, rate of return, 
and associated weights are identified as corresponding rows in the vectors and 
matrix.

For example, you can see from these results that the second portfolio has a risk 
of 0.0445, an expected return of 13.16%, and allocations of about 67% in the 
first asset, 30% in the second, and 3% in the third.
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Portfolio Selection and Risk Aversion
One of the factors to consider when selecting the optimal portfolio for a 
particular investor is degree of risk aversion. This level of aversion to risk can 
be characterized by defining the investor’s indifference curve. This curve 
consists of the family of risk/return pairs defining the trade-off between the 
expected return and the risk. It establishes the increment in return that a 
particular investor will require in order to make an increment in risk 
worthwhile. Typical risk aversion coefficients range between 2.0 and 4.0, with 
the higher number representing lesser tolerance to risk. The equation used to 
represent risk aversion in the Financial Toolbox is

U = E(r)  0.005*A*sig^2

where:

U is the utility value.

E(r) is the expected return.

A is the index of investor’s aversion.

sig is the standard deviation.



Portfolio Selection and Risk Aversion
Optimal Risky Portfolio Example
This example computes the optimal risky portfolio on the efficient frontier 
based upon the risk-free rate, the borrowing rate, and the investor's degree of 
risk aversion. You do this with the function portalloc. 

First generate the efficient frontier data using either portopt or frontcon. 
This example uses portopt and the same asset data from the previous 
example.

ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance  = [ 0.005   -0.010    0.004;
                 -0.010    0.040   -0.002;
                  0.004   -0.002    0.023];

This time consider 20 different points along the efficient frontier.

NumPorts = 20;
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... 
ExpCovariance, NumPorts);
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As with frontcon, calling portopt while specifying output arguments returns 
the corresponding vectors and arrays representing the risk, return, and 
weights for each of the portfolios along the efficient frontier. Use them as the 
first three input arguments to the function portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds 
between the risky portfolio and the risk-free asset, using these values for the 
risk-free rate, borrowing rate and investor’s degree of risk aversion.

RisklessRate  =  0.08
BorrowRate    =  0.12
RiskAversion  =  3

Calling portalloc without specifying any output arguments gives a graph 
displaying the critical points.

portalloc (PortRisk, PortReturn, PortWts, RisklessRate,... 
BorrowRate, RiskAversion);

Calling portalloc while specifying the output arguments returns the variance 
(RiskyRisk), the expected return (RiskyReturn), and the weights (RiskyWts) 
allocated to the optimal risky portfolio. It also returns the fraction 
0
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(RiskyFraction) of the complete portfolio allocated to the risky portfolio, and 
the variance (OverallRisk) and expected return (OverallReturn) of the 
optimal overall portfolio. The overall portfolio combines investments in the 
risk-free asset and in the risky portfolio. The actual proportion assigned to each 
of these two investments is determined by the degree of risk aversion 
characterizing the investor.

[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,... 
OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,... 
RisklessRate, BorrowRate, RiskAversion)

RiskyRisk = 0.1288
RiskyReturn = 0.1791
RiskyWts = 0.0057 0.5879 0.4064
RiskyFraction = 1.1869
OverallRisk = 0.1529
OverallReturn = 0.1902

The value of RiskyFraction exceeds 1 (100%), implying that the risk tolerance 
specified allows borrowing money to invest in the risky portfolio, and that no 
money will be invested in the risk-free asset. This borrowed capital is added to 
the original capital available for investment. In this example the customer will 
tolerate borrowing 18.69% of the original capital amount.
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Constraint Specification 
This example computes the efficient frontier of portfolios consisting of three 
different assets, INTC, XON, and RD, given a list of constraints. The expected 
returns for INTC, XON, and RD are respectively as follows.

ExpReturn = [0.1 0.2 0.15]; 

The covariance matrix is 

ExpCovariance  =  [ 0.005   -0.010    0.004;
                   -0.010    0.040   -0.002;
                    0.004   -0.002    0.023];

Constraint 1. Allow short selling up to 10% of the portfolio value in any asset but 
limit the investment in any one asset to 110% of the portfolio value.

Constraint 2. Consider two different sectors, technology and energy, with the 
table below indicating the sector each asset belongs to.

Constrain the investment in the Energy sector to 80% of the portfolio value, 
and the investment in the Technology sector to 70%.

To solve this problem, use frontcon, passing in a list of asset constraints. 
Consider eight different portfolios along the efficient frontier.

NumPorts = 8;

To introduce the asset bounds constraints specified in Constraint 1, create the 
matrix AssetBounds, where each column represents an asset. The upper row 
represents the lower bounds, and the lower row represents the upper bounds.

AssetBounds = [-0.10, -0.10, -0.10;
                1.10,  1.10,  1.10];

Constraint 2 needs to be entered in two parts, the first part defining the groups, 
and the second part defining the constraints for each group. Given the 
information above, you can build a matrix of 1s and 0s indicating whether a 
specific asset belongs to a group. Each column represents an asset, and each 

Asset INTC XON RD

Sector Technology Energy Energy
2
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row represents a group. This example has two groups: the technology group, 
and the energy group. Create the matrix Groups as follows.

Groups =  [0   1   1; 
1   0   0];

The GroupBounds matrix allows you to specify an upper and lower bound for 
each group. Each row in this matrix represents a group. The first column 
represents the minimum allocation, and the second column represents the 
maximum allocation to each group. Since the investment in the Energy sector 
is capped at 80% of the portfolio value, and the investment in the Technology 
sector is capped at 70%, create the GroupBounds matrix using this information. 

GroupBounds = [0   0.80;
0   0.70];

Now use frontcon to obtain the vectors and arrays representing the risk, 
return, and weights for each of the eight portfolios computed along the efficient 
frontier.

[PortRisk, PortReturn, PortWts] =  frontcon(ExpReturn,... 
ExpCovariance, NumPorts, [], AssetBounds, Groups, GroupBounds)

PortRisk =   

    0.0416
    0.0499
    0.0624
    0.0767
    0.0920
    0.1100
    0.1378
    0.1716

PortReturn  =

   0.1279
   0.1361
   0.1442
   0.1524
   0.1605
   0.1687
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   0.1768
   0.1850

PortWts  =

    0.7000    0.2582    0.0418
    0.6031    0.3244    0.0725
    0.4864    0.3708    0.1428
    0.3696    0.4172    0.2132
    0.2529    0.4636    0.2835
    0.2000    0.5738    0.2262
    0.2000    0.7369    0.0631
    0.2000    0.9000   -0.1000

The output data is represented row-wise, where each portfolio’s risk, rate of 
return, and associated weight is identified as corresponding rows in the vectors 
and matrix.

Linear Constraint Equations
While frontcon allows you to enter a fixed set of constraints related to 
minimum and maximum values for groups and individual assets, you often 
need to specify a larger and more general set of constraints when finding the 
optimal risky portfolio. The function portopt addresses this need, by accepting 
an arbitrary set of constraints as an input matrix. 

The auxiliary function portcons can be used to create the matrix of 
constraints, with each row representing an inequality. These inequalities are 
of the type A*Wts' <= b, where A is a matrix, b is a vector, and Wts is a row 
vector of asset allocations. The number of columns of the matrix A, and the 
length of the vector Wts correspond to the number of assets. The number of 
rows of the matrix A, and the length of vector b correspond to the number of 
constraints. This method allows you to specify any number of linear 
inequalities to the function portopt.

In actuality, portcons is an entry point to a set of functions that generate 
matrices for specific types of constraints. portcons allows you to specify all the 
constraints data at once, while the specific portfolio constraint functions allow 
you to build the constraints incrementally. These constraint functions are 
pcpval, pcalims, pcglims, and pcgcomp. 
4
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Consider an example to help understand how to specify constraints to portopt 
while bypassing the use of portcons. This example requires specifying the 
minimum and maximum investment in various groups.

Note that the minimum and maximum exposure in Asia is the same. This 
means that you require a fixed exposure for this group.

Also assume that the portfolio consists of three different funds. The 
correspondence between funds and groups is shown in Table 3-2.

Using the information in these two tables, build a mathematical 
representation of the constraints represented. Assume that the vector of 
weights representing the exposure of each asset in a portfolio is called 
Wts = [W1 W2 W3]. 

Table 3-1:  Maximum and Minimum Group Exposure

Group Minimum Exposure Maximum Exposure

North America 0.30 0.75

Europe 0.10 0.55

Latin America 0.20 0.50

Asia 0.50 0.50

Table 3-2:  Group Membership

Group Fund 1 Fund 2 Fund 3

North America X X

Europe X

Latin America X

Asia X X
3-15



3 Portfolio Analysis

3-1
Specifically

Since you need to represent the information in the form A*Wts <= b, multiply 
equations 1, 3 and 5 by –1. Also turn equation 7 into a set of two inequalities: 
W2 + W3 ≥ 0.50 and W2 + W3 ≤ 0.50 (The intersection of these two inequalities 
is the equality itself.). Thus

1. W1 + W2 ≥ 0.30

2. W1 + W2 ≤ 0.75

3. W3 ≥ 0.10

4. W3 ≤ 0.55

5. W1 ≥ 0.20

6. W1 ≤ 0.50

7. W2 + W3 = 0.50

1. -W1 - W2 ≤ -0.30

2. W1 + W2 ≤ 0.75

3. -W3 ≤ -0.10

4. W3 ≤ 0.55

5. -W1 ≤ -0.20

6. W1 ≤ 0.50

7. -W2 - W3 ≤ -0.50

8. W2 + W3 ≤ 0.50
6
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Bringing these equations into matrix notation gives

A = [-1    -1     0;
1     1     0;
0     0    -1;
0     0     1;
-1     0     0;
1     0     0;
0    -1    -1;
0     1     1]

b = [-0.30;
0.75;
-0.10;
0.55;
-0.20;
0.50;
-0.50;
0.50]

Build the constraint matrix ConSet by concatenating the matrix A to the vector 
b.

ConSet = [A, b] 

Specifying Additional Constraints
The example above defined a constraints matrix that specified a set of typical 
scenarios. It defined groups of assets, specified upper and lower bounds for 
total allocation in each of these groups, and it set the total allocation of one of 
the groups to a fixed value. Constraints like these are common occurrences. 
The function portcons was created to simplify the creation of the constraint 
matrix for these and other common portfolio requirements. portcons takes as 
input arguments a list of constraint-specifier strings, followed by the data 
necessary to build the constraint specified by the strings.

Assume that you need to add more constraints to the previous example. 
Specifically, add a constraint indicating that the sum of weights in any 
portfolio should be equal to 1, and another set of constraints (one per asset) 
indicating that the weight for each asset must greater than 0. This translates 
into five more constraint rows: two for the new equality, and three indicating 
that each weight must be greater or equal to 0. The total number of inequalities 
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in the example is now 13. Clearly, creating the constraint matrix can turn into 
a tedious task.

To create the new constraint matrix using portcons, use two separate 
constraint-specifier strings: 

• 'Default', which indicates that each weight is greater than 0 and that the 
total sum of the weights adds to 1.

• 'GroupLims', which defines the minimum and maximum allocation on each 
group. 

The only data requirement for the constraint-specifier string 'Default' is 
NumAssets (the total number of assets). The constraint-specifier string 
'GroupLims' requires three different arguments: a Groups matrix indicating 
the assets that belong to each group, the GroupMin vector indicating the 
minimum bounds for each group, and the GroupMax vector indicating the 
maximum bounds for each group. Based on Table 3-2, Group Membership, 
build the Group matrix, with each row representing a group, and each column 
representing an asset.

Group = [1    1    0;
 0    0    1;
 1    0    0;
 0    1    1]

Table 3-1, Maximum and Minimum Group Exposure, has the information to 
build GroupMin and GroupMax.

GroupMin = [0.30 0.10 0.20 0.50];
GroupMax = [0.75 0.55 0.50 0.50];

Given that the number of assets is three, build the constraint matrix by calling 
portcons.

ConSet = portcons('Default', 3, 'GroupLims', Group, GroupMin,... 
GroupMax);

In most cases, portcons('Default') returns the minimal set of constraints 
required for calling portopt. If ConSet is not specified in the call to portopt, 
the function calls portcons passing 'Default' as its only specifier.

Now use portopt to obtain the vectors and arrays representing the risk, 
return, and weights for the portfolios computed along the efficient frontier.
8
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[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... 
ExpCovariance, [], [], ConSet)

PortRisk = 0.0586
Port Return = 0.1375
PortWts = 0.5 0.25 0.25

In this case the constraints allow only one optimum portfolio.
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Active Returns and Tracking Error Efficient Frontier
Suppose you wish to identify an efficient set of portfolios that minimize the 
variance of the difference in returns with respect to a given target portfolio, 
subject to a given expected excess return. The mean and standard deviation of 
this excess return are often called the active return and active risk, 
respectively. Active risk is sometimes referred to as the tracking error. Since 
the objective is to track a given target portfolio as closely as possible, the 
resulting set of portfolios is sometimes referred to as the tracking error efficient 
frontier.

Specifically, assume that the target portfolio is expressed as an index weight 
vector, such that the index return series may be expressed as a linear 
combination of the available assets. This example illustrates how to construct 
a frontier that minimizes the active risk (tracking error) subject to attaining a 
given level of return. That is, it computes the tracking error efficient frontier.

One way to construct the tracking error efficient frontier is to explicitly form 
the target return series and subtract it from the return series of the individual 
assets. In this manner, you specify the expected mean and covariance of the 
active returns, and compute the efficient frontier subject to the usual portfolio 
constraints.

This example works directly with the mean and covariance of the absolute 
(unadjusted) returns but converts the constraints from the usual absolute 
weight format to active weight format. 

Consider a portfolio of five assets with the following expected returns, standard 
deviations, and correlation matrix based on absolute weekly asset returns.

NumAssets    =  5;

ExpReturn    = [0.2074  0.1971  0.2669  0.1323  0.2535]/100;

Sigmas       = [2.6570  3.6297  3.9916  2.7145  2.6133]/100;

Correlations = [1.0000  0.6092  0.6321  0.5833  0.7304
                0.6092  1.0000  0.8504  0.8038  0.7176
                0.6321  0.8504  1.0000  0.7723  0.7236
                0.5833  0.8038  0.7723  1.0000  0.7225
                0.7304  0.7176  0.7236  0.7225  1.0000];
0
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Convert the correlations and standard deviations to a covariance matrix.

ExpCovariance = corr2cov(Sigmas, Correlations);

Next, assume that the target index portfolio is simply an equally-weighted 
portfolio formed from the five assets. Note that the sum of index weights equals 
1, satisfying the standard full investment budget equality constraint.

Index = ones(NumAssets, 1)/NumAssets;

Generate an asset constraint matrix via portcons. The constraint matrix 
AbsConSet is expressed in absolute format (unadjusted for the index), and is 
formatted as [A b], corresponding to constraints of the form A*w <= b. Each 
row of AbsConSet corresponds to a constraint, and each column corresponds to 
an asset. Allow no short-selling and full investment in each asset (lower and 
upper bounds of each asset are 0 and 1, respectively). In particular, note that 
the first two rows correspond to the budget equality constraint; the remaining 
rows correspond to the upper/lower investment bounds.

AbsConSet = portcons('PortValue', 1, NumAssets, ...
'AssetLims', zeros(NumAssets,1), ones(NumAssets,1));

Now transform the absolute constraints to active constraints with abs2active.

ActiveConSet = abs2active(AbsConSet, Index);

An examination of the absolute and active constraint matrices reveals that 
they are differ only in the last column (the columns corresponding to the b in 
A*w <= b). 

[AbsConSet(:,end)  ActiveConSet(:,end)]

ans =

    1.0000         0
   -1.0000         0
    1.0000    0.8000
    1.0000    0.8000
    1.0000    0.8000
    1.0000    0.8000
    1.0000    0.8000
         0    0.2000
         0    0.2000
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         0    0.2000
         0    0.2000
         0    0.2000

In particular, note that the sum-to-one absolute budget constraint becomes a 
sum-to-zero active budget constraint. The general transformation is as follows: 

Now construct and plot the tracking error efficient frontier with 21 portfolios.

[ActiveRisk, ActiveReturn, ActiveWeights] = ... 
portopt(ExpReturn,ExpCovariance, 21, [], ActiveConSet);
ActiveRisk = real(ActiveRisk);
plot(ActiveRisk*100, ActiveReturn*100, 'blue')
grid('on')
xlabel('Active Risk (Standard Deviation in Percent)')
ylabel('Active Return (Percent)')
title('Tracking Error Efficient Frontier')

bactive babsolute A Index⋅–=
2
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Of particular interest is the lower left-hand portfolio along the frontier. This 
zero-risk/zero-return portfolio has a very practical economic significance. It 
represents a full investment in the index portfolio itself. Note that each 
tracking error efficient portfolio (each row in the array ActiveWeights) 
satisfies the active budget constraint, and thus represents portfolio investment 
allocations with respect to the index portfolio. To convert these allocations to 
absolute investment allocations, add the index to each efficient portfolio.

AbsoluteWeights  =  ActiveWeights + repmat(Index', 21, 1);
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Portfolios with Missing Data
There are times when you need to compute statistical values for portfolios, but 
some of the data is unavailable. The Financial Toolbox provides the function 
ecmnmle, which computes the mean and covariance of data with missing 
elements. 

The algorithm assumes that missing values are missing at random and 
non-ignorable. (See Little and Rubin [1] for precise definitions of these terms.) 
Asset data that does not exist prior to a certain date, e.g., stock price data prior 
to an IPO, is an example where ecmnmle is appropriate. MATLAB represents 
these unavailable values as NaN. For a counterexample, consider censored data, 
in which all values greater than some cutoff are replaced with NaNs. This type 
of data does not satisfy the conditions under which you can use ecmnmle.

The general model that ecmnmle solves estimates the mean m and covariance 
C of a collection of independent identically-distributed observations of an 
n-dimensional multivariate normal random variable

Z  ~  N(m, C)

with m observations z(1), … , z(m) of the random variable Z.

The collection of observations (or samples) is stored in a MATLAB matrix Data 
such that

Data(i, :)  =  z(i)T

for i = 1, … , m, where Data is an m-by-n matrix.

Implementation of ecmnmle
The function ecmnmle obtains estimates for the mean (m) and the covariance 
(C) of Data with NumSamples = m samples and NumSeries = n random 
variables. If data is missing, this routine implements the ECM algorithm of 
Meng and Rubin [2] with enhancements by Sexton and Swensen [3]. ECM 
stands for expectation conditional maximization, a conditional maximization 
form of the EM algorithm of Dempster, Laird, and Rubin [4].

If a record is empty, i.e., every value in a sample is NaN, this routine ignores the 
record since the record contributes no information. If such records exist in the 
data, the number of nonempty samples used in the estimation (Count) is 
Count ≤ NumSamples.
4
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The estimate for the covariance is a biased maximum likelihood estimate 
(MLE). To formally evaluate standard errors, it is important to construct 
unbiased estimates. To convert to an unbiased estimate, multiply the 
covariance by .

Requirements
This routine has several requirements: 

• Consistent values for NumSamples and NumSeries with 
NumSamples > NumSeries 

• Enough nonmissing values to converge 

• Positive definite covariance matrix 

Although you can find some necessary and sufficient conditions in the 
references, general conditions for existence and uniqueness of solutions in the 
missing-data case do not exist. The main failure mode is an ill-conditioned 
covariance matrix estimate, which is discussed below in greater detail. 
Nonetheless, this routine works for most cases that have no more than 15% of 
total data with missing values (typical for most financial applications).

Technology Stock Example
This example illustrates the use of the missing data algorithm. It loads in five 
years of daily total return data for 12 computer technology stocks with 6 
hardware and 6 software companies. The example estimates the mean and 
covariance matrix for these stocks, forms efficient frontiers with both a naïve 
approach and the ECM approach, and compares results.

You can run the example directly with ecmtechdemo. The steps presented here 
illustrate the process.

To begin the example, load in the data file.

load ecmtechdemo

This file contains three quantities:

• Assets: a cell array of the tickers for the 12 stocks in the example 

• Data: a 1254-by-12 matrix of 1254 daily total returns for each of the 12 stocks 

• Dates: a 1254-by-1 column vector of the dates associated with the data. The 
time period extends from April 19, 2000 to April 18, 2005.

Count Count 1–( )⁄
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The sixth stock in Assets is Google (GOOG), which started trading on August 
19, 2004. Consequently, all returns prior to August 20, 2004 are missing and 
represented as NaNs. Also, Amazon (AMZN) had a few days with missing values 
scattered throughout the past five years.

A naïve approach to the estimation of the mean and covariance for these 12 
assets is to eliminate all days that have missing values for any of the 12 assets. 
Use the function ecmninit with the nanskip option to accomplish this.

[NaNMean, NaNCovar] = ecmninit(Data,'nanskip');

Contrast the result of this approach with using all available data and the 
function ecmnmle to compute the mean and covariance. First, call ecmnmle with 
no output arguments to establish that sufficient data is available to obtain 
meaningful estimates.

ecmnmle(Data);

The figure shows that, even with almost 87% of the Google data being NaN 
values, the algorithm converges after only four iterations.

Now estimate the mean and covariance as computed by ecmnmle.
6



Portfolios with Missing Data
[ECMMean, ECMCovar] = ecmnmle(Data)

ECMMean =

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
   -0.0003
    0.0004

ECMCovar =

    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002
    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001
    0.0005    0.0006    0.0008    0.0005    0.0007    0.0003
    0.0006    0.0012    0.0008    0.0007    0.0011    0.0016

0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
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    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
    0.0005    0.0004    0.0007    0.0004    0.0013    0.0007
    0.0006    0.0004    0.0007    0.0005    0.0007    0.0020

Given these estimates for the mean and covariance of asset returns derived 
from both the naïve and the ECM approaches, estimate portfolios and 
associated expected returns and risks on the efficient frontier for both 
approaches.

[ECMRisk, ECMReturn, ECMWts] = portopt(ECMMean',ECMCovar,10);
[NaNRisk, NaNReturn, NaNWts] = portopt(NaNMean',NaNCovar,10);

Finally, plot the results on the same graph to illustrate the differences.

figure(gcf)
plot(ECMRisk, ECMReturn,'-bo','MarkerFaceColor', 'b',... 
'MarkerSize', 3);
hold all
plot(NaNRisk, NaNReturn, '-r*', 'MarkerFaceColor',' r',... 
'MarkerSize', 3);
title('\bfMean-Variance Efficient Frontiers');
legend('ECM','NaN','Location','SouthEast');
xlabel('\bfStd. Dev. of Returns');
ylabel('\bfMean of Returns');
hold off
8
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Clearly, the naïve approach, displayed by the leftmost plot, is extremely 
optimistic about the risk-return tradeoffs for this universe of 12 technology 
stocks. The proof, however, lies in the portfolio weights. To view the weights, 
enter

Assets
ECMWts
NaNWts

which generates

Assets = 

  Columns 1 through 8
'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG' 'HPQ' 'IBM'

Columns 9 through 12
'INTC' 'MSFT' 'ORCL' 'YHOO'
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ECMWts =

Columns 1 through 8 

0.0358 0.0011 -0.0000 0.0000 0.0000 0.0989 0.0535 0.4676
0.0654 0.0110 0.0000 -0.0000 -0.0000 0.1877 0.0179 0.3899
0.0923 0.0194 0.0000 0.0000 -0.0000 0.2784 0.0000 0.3025
0.1165 0.0264 -0.0000 0 -0.0000 0.3712 0.0000 0.2054
0.1407 0.0334 0.0000 0 0.0000 0.4639 0.0000 0.1083
0.1648 0.0403 0.0000 0 -0.0000 0.5566 0.0000 0.0111
0.1755 0.0457 0.0000 0.0000 0.0000 0.6532 0.0000 0.0000
0.1845 0.0509 -0.0000 0.0000 0 0.7502 0.0000 -0.0000
0.1093 0.0174 -0.0000 0 0 0.8733 0.0000 -0.0000

0 0 -0.0000 0.0000 -0.0000 1.0000 0.0000 -0.0000

Columns 9 through 12 

0.0000 0.3431 -0.0000 0.0000
-0.0000 0.3282 0.0000 -0.0000
-0.0000 0.3074 0.0000 -0.0000
-0.0000 0.2806 0.0000 -0.0000
-0.0000 0.2538 -0.0000 0.0000
-0.0000 0.2271 -0.0000 0.0000
-0.0000 0.1255 -0.0000 0.0000
-0.0000 0.0143 -0.0000 -0.0000
-0.0000 0 -0.0000 0.0000
-0.0000 -0.0000 -0.0000 0.0000

NaNWts =

Columns 1 through 8 

-0.0000 0.0000 -0.0000 0.1185 0.0000 0.0522 0.0824 0.1779
0.0576 -0.0000 -0.0000 0.1219 0.0000 0.0854 0.1274 0.0460
0.1248 -0.0000 -0.0000 0.0952 0.0000 0.1195 0.1674 -0.0000
0.1969 -0.0000 -0.0000 0.0529 0.0000 0.1551 0.2056 -0.0000
0.2690 -0.0000 -0.0000 0.0105 0.0000 0.1906 0.2438 -0.0000
0.3414 -0.0000 -0.0000 -0.0000 0.0000 0.2265 0.2782 -0.0000
0.4235 0.0000 -0.0000 -0.0000 0.0000 0.2639 0.2788 -0.0000
0.5245 0.0000 -0.0000 -0.0000 0.0000 0.3034 0.1721 -0.0000
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0.6269 -0.0000 -0.0000 0.0000 -0.0000 0.3425 0.0306 0.0000
1.0000 -0.0000 -0.0000 0.0000 -0.0000 0 0 0.0000

Columns 9 through 12 

0.0000 0.5691 -0.0000 0.0000
0.0000 0.5617 -0.0000 0.0000
0.0000 0.4802 0.0129 0.0000
0.0000 0.3621 0.0274 0.0000
0.0000 0.2441 0.0419 -0.0000
0.0000 0.0988 0.0551 -0.0000
0.0000 0.0000 0.0337 -0.0000
0.0000 0.0000 0.0000 -0.0000
0.0000 -0.0000 -0.0000 -0.0000
0.0000 -0.0000 -0.0000 -0.0000

The naïve portfolios in NaNWts tend to favor Apple Computer (AAPL), which 
happened to do well over the period from the Google IPO to the end of the 
estimation period, while the ECM portfolios in ECMWts tend to underweight 
Apple and to recommend increased weights in Google relative to the naïve 
weights.

To evaluate the impact of estimation error and, in particular, the effect of 
missing data, use ecmnstd to calculate standard errors. Although it is possible 
to estimate the standard errors for both the mean and covariance, the standard 
errors for the mean estimates alone are usually the main quantities of interest.

The theoretical lower-bound estimate for standard errors is derived from the 
Fisher information matrix, computed by ecmnstd with the fisher option. 

StdMeanF = ecmnstd(Data, ECMMean, ECMCovar, 'fisher');

Now, calculate standard errors that use the data-generated Hessian matrix 
(which accounts for the possible loss of information due to missing data). 
Compute this standard error by ecmnstd with the hessian option. 

StdMeanH = ecmnstd(Data, ECMMean, ECMCovar, 'hessian');

The difference in the standard errors shows the increase in uncertainty of 
estimation of expected returns resulting from missing data. You can view this 
difference by entering
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Assets
StdMeanH'
StdMeanF'
StdMeanH' - StdMeanF'

The two assets with NaNs, AMZN and GOOG, are the only assets to have 
differences caused by the missing information.

Failure of ecmnmle
Although ecmnmle works for most “typical” cases, it can fail. Failures 
frequently derive from an ill-conditioned covariance matrix. Failures may be 
soft or hard. A soft failure randomly moves toward a very nearly singular 
covariance matrix. You can spot a soft failure if the algorithm fails to converge 
after about 100 iterations. If you increase MaxIterations to, say, 500 and 
initiate display mode (no outputs from ecmnmle), a typical soft failure looks like 
this.

This case, which is based on 20 observations of 5 assets with 30% of data 
missing, shows that the log-likelihood goes somewhat linearly to infinity as the 
likelihood function goes to zero. In this case, ecmnmle converges, but the 
covariance matrix is effectively singular with a smallest eigenvalue on the 
order of machine precision (eps).
2



Portfolios with Missing Data
A hard failure looks like this.

In ecmninit at 60
In ecmnmle at 140

??? Error using ==> ecmnmle
Full covariance not positive-definite in iteration 218.

From a practical standpoint, if in doubt, test the covariance matrix from 
ecmnmle to ensure that it is positive-definite, especially since a soft error has a 
matrix that appears to be positive-definite but actually has a near-zero-valued 
eigenvalue to within machine precision. To do this with a covariance estimate 
Covar, use cond(Covar), where any value greater than 1/eps is suspect.

If either type of failure occurs, however, ecmnmle is indicating that something 
is probably wrong with the data. For example, even with no missing data, two 
time series that are proportional have a nonpositive-definite covariance 
matrix.
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Solving Sample Problems 

Common Problems in Finance (p. 4-3) Problems involving bond portfolios and equity options.

Producing Graphics with the Toolbox 
(p. 4-19)

Use of MATLAB graphics to illustrate financial data.
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This section shows how Financial Toolbox functions solve real-world problems. 
The examples ship with the toolbox as M-files. Try them by entering the 
commands directly or by executing the M-files. 

This chapter contains two major topics:

• “Common Problems in Finance” on page 4-3

This section shows how the toolbox solves real-world financial problems.

- “Sensitivity of Bond Prices to Changes in Interest Rates” on page 4-3

- “Constructing a Bond Portfolio to Hedge Against Duration and Convexity” 
on page 4-6

- “Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve” on 
page 4-8

- “Constructing Greek-Neutral Portfolios of European Stock Options” on 
page 4-12

- “Term Structure Analysis and Interest Rate Swap Pricing” on page 4-15

• “Producing Graphics with the Toolbox” on page 4-19

This section shows how the toolbox produces presentation-quality graphics 
by solving these problems: 

- “Plotting an Efficient Frontier” on page 4-19

- “Plotting Sensitivities of an Option” on page 4-21

- “Plotting Sensitivities of a Portfolio of Options” on page 4-23



Common Problems in Finance
Common Problems in Finance

Sensitivity of Bond Prices to Changes in Interest 
Rates
Macaulay and modified duration measure the sensitivity of a bond’s price to 
changes in the level of interest rates. Convexity measures the change in 
duration for small shifts in the yield curve, and thus measures the second-order 
price sensitivity of a bond. Both measures can gauge the vulnerability of a bond 
portfolio’s value to changes in the level of interest rates.

Alternatively, analysts can use duration and convexity to construct a bond 
portfolio that is partly hedged against small shifts in the term structure. If you 
combine bonds in a portfolio whose duration is zero, the portfolio is insulated, 
to some extent, against interest rate changes. If the portfolio convexity is also 
zero, this insulation is even better. However, since hedging costs money or 
reduces expected return, you need to know how much protection results from 
hedging duration alone compared with hedging both duration and convexity.

This example demonstrates a way to analyze the relative importance of 
duration and convexity for a bond portfolio using some of the SIA-compliant 
bond functions in the Financial Toolbox. Using duration, it constructs a 
first-order approximation of the change in portfolio price to a level shift in 
interest rates. Then, using convexity, it calculates a second-order 
approximation. Finally it compares the two approximations with the true price 
change resulting from a change in the yield curve. The example M-file is 
ftspex1.m.

Step 1. Define three bonds using values for the settlement date, maturity date, 
face value, and coupon rate. For simplicity, accept default values for the coupon 
payment periodicity (semiannual), end-of-month payment rule (rule in effect), 
and day-count basis (actual/actual). Also, synchronize the coupon payment 
structure to the maturity date (no odd first or last coupon dates). Any inputs 
for which defaults are accepted are set to empty matrices ([]) as placeholders 
where appropriate.

Settle     = '19-Aug-1999';
Maturity   = ['17-Jun-2010'; '09-Jun-2015'; '14-May-2025'];
Face       = [100; 100; 1000];
CouponRate = [0.07; 0.06; 0.045];
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Also, specify the yield curve information.

Yields = [0.05; 0.06; 0.065];

Step 2. Use Financial Toolbox functions to calculate the price, modified 
duration in years, and convexity in years of each bond.

The true price is quoted (clean) price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,... 
Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity, 2, 
0,... [], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle, Maturity,2, 
0,... [], [], [], [], [], Face);

Prices  =  CleanPrice + AccruedInterest;

Step 3. Choose a hypothetical amount by which to shift the yield curve (here, 
0.2 percentage point or 20 basis points).

dY = 0.002;

Weight the three bonds equally, and calculate the actual quantity of each bond 
in the portfolio, which has a total value of $100,000.

PortfolioPrice   = 100000;
PortfolioWeights = ones(3,1)/3;
PortfolioAmounts = PortfolioPrice * PortfolioWeights ./ Prices;

Step 4. Calculate the modified duration and convexity of the portfolio. Note 
that the portfolio duration or convextity is a weighted average of the durations 
or convexities of the individual bonds. Calculate the first- and second-order 
approximations of the percent price change as a function of the change in the 
level of interest rates.

PortfolioDuration  = PortfolioWeights' * Durations;
PortfolioConvexity = PortfolioWeights' * Convexities;
PercentApprox1 = -PortfolioDuration * dY * 100;
PercentApprox2 =  PercentApprox1 + ...
PortfolioConvexity*dY^2*100/2.0;
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Step 5. Estimate the new portfolio price using the two estimates for the percent 
price change.

PriceApprox1  =  PortfolioPrice + ... 
PercentApprox1 * PortfolioPrice/100; 

PriceApprox2  =  PortfolioPrice + ...
PercentApprox2 * PortfolioPrice/100;

Step 6. Calculate the true new portfolio price by shifting the yield curve.

[CleanPrice, AccruedInterest] = bndprice(Yields + dY,...
CouponRate, Settle, Maturity, 2, 0, [], [], [], [], [],...
Face);

NewPrice = PortfolioAmounts' * (CleanPrice + AccruedInterest);

Step 7. Compare the results. The analysis results are as follows (verify these 
results by running the example M-file ftspex1.m):

• The original portfolio price was $100,000. 

• The yield curve shifted up by 0.2 percentage point or 20 basis points. 

• The portfolio duration and convexity are 10.3181 and 157.6346, respectively. 
These will be needed below for “Constructing a Bond Portfolio to Hedge 
Against Duration and Convexity”. 

• The first-order approximation, based on modified duration, predicts the new 
portfolio price (PriceApprox1) will be $97,936.37.

• The second-order approximation, based on duration and convexity, predicts 
the new portfolio price (PriceApprox2) will be $97,967.90.

• The true new portfolio price (NewPrice) for this yield curve shift is 
$97,967.51.

• The estimate using duration and convexity is quite good (at least for this 
fairly small shift in the yield curve), but only slightly better than the 
estimate using duration alone. The importance of convexity increases as the 
magnitude of the yield curve shift increases. Try a larger shift (dY) to see this 
effect.

The approximation formulas in this example consider only parallel shifts in the 
term structure, because both formulas are functions of dY, the change in yield. 
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The formulas are not well-defined unless each yield changes by the same 
amount. In actual financial markets, changes in yield curve level typically 
explain a substantial portion of bond price movements. However, other 
changes in the yield curve, such as slope, may also be important and are not 
captured here. Also, both formulas give local approximations whose accuracy 
deteriorates as dY increases in size. You can demonstrate this by running the 
program with larger values of dY.

Constructing a Bond Portfolio to Hedge Against 
Duration and Convexity
This example constructs a bond portfolio to hedge the portfolio of “Sensitivity 
of Bond Prices to Changes in Interest Rates.” It assumes a long position in 
(holding) the portfolio, and that three other bonds are available for hedging. It 
chooses weights for these three other bonds in a new portfolio so that the 
duration and convexity of the new portfolio match those of the original 
portfolio. Taking a short position in the new portfolio, in an amount equal to 
the value of the first portfolio, partially hedges against parallel shifts in the 
yield curve.

Recall that portfolio duration or convexity is a weighted average of the 
durations or convexities of the individual bonds in a portfolio. As in the 
previous example, this example uses modified duration in years and convexity 
in years. The hedging problem therefore becomes one of solving a system of 
linear equations, which is very easy to do in MATLAB. The M-file for this 
example is ftspex2.m.

Step 1. Define three bonds available for hedging the original portfolio. Specify 
values for the settlement date, maturity date, face value, and coupon rate. For 
simplicity, accept default values for the coupon payment periodicity 
(semiannual), end-of-month payment rule (rule in effect), and day-count basis 
(actual/actual). Also, synchronize the coupon payment structure to the 
maturity date (i.e., no odd first or last coupon dates). Set any inputs for which 
defaults are accepted to empty matrices ([]) as placeholders where 
appropriate. The intent is to hedge against duration and convexity as well as 
constrain total portfolio price.

Settle     = '19-Aug-1999';
Maturity   = ['15-Jun-2005'; '02-Oct-2010'; '01-Mar-2025'];
Face       = [500; 1000; 250];
CouponRate = [0.07; 0.066; 0.08];
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Also, specify the yield curve for each bond.

Yields = [0.06; 0.07; 0.075];

Step 2. Use Financial Toolbox functions to calculate the price, modified 
duration in years, and convexity in years of each bond.

The true price is quoted (clean price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields,CouponRate,... 
Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity,...
2, 0, [], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle,... 
Maturity, 2, 0, [], [], [], [], [], Face);

Prices  =  CleanPrice + AccruedInterest;

Step 3. Set up and solve the system of linear equations whose solution is the 
weights of the new bonds in a new portfolio with the same duration and 
convexity as the original portfolio. In addition, scale the weights to sum to 1; 
that is, force them to be portfolio weights. You can then scale this unit portfolio 
to have the same price as the original portfolio. Recall that the original portfolio 
duration and convexity are 10.3181 and 157.6346, respectively. Also, note that 
the last row of the linear system ensures the sum of the weights is unity.

A = [Durations'
     Convexities'
     1 1 1];

b = [ 10.3181
     157.6346
       1];

Weights = A\b;

Step 4. Compute the duration and convexity of the hedge portfolio, which 
should now match the original portfolio.

PortfolioDuration  = Weights' * Durations;
PortfolioConvexity = Weights' * Convexities;
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Step 5. Finally, scale the unit portfolio to match the value of the original 
portfolio and find the number of bonds required to insulate against small 
parallel shifts in the yield curve.

PortfolioValue = 100000;
HedgeAmounts   = Weights ./ Prices * PortfolioValue;

Step 6. Compare the results. (Verify the analysis results by running the 
example M-file ftspex2.m.)

• As required, the duration and convexity of the new portfolio are 10.3181 and 
157.6346, respectively. 

• The hedge amounts for bonds 1, 2, and 3 are -57.37, 71.70, and 216.27, 
respectively. 

Notice that the hedge matches the duration, convexity, and value ($100,000) of 
the original portfolio. If you are holding that first portfolio, you can hedge by 
taking a short position in the new portfolio.

Just as the approximations of the first example are appropriate only for small 
parallel shifts in the yield curve, the hedge portfolio is appropriate only for 
reducing the impact of small level changes in the term structure.

Sensitivity of Bond Prices to Parallel Shifts in the 
Yield Curve
Often bond portfolio managers want to consider more than just the sensitivity 
of a portfolio’s price to a small shift in the yield curve, particularly if the 
investment horizon is long. This example shows how MATLAB can visualize 
the price behavior of a portfolio of bonds over a wide range of yield curve 
scenarios, and as time progresses toward maturity.

This example uses the Financial Toolbox bond pricing functions to evaluate the 
impact of time-to-maturity and yield variation on the price of a bond portfolio. 
It plots the portfolio value and shows the behavior of bond prices as yield and 
time vary. This example M-file is ftspex3.m.

Step 1. Specify values for the settlement date, maturity date, face value, 
coupon rate, and coupon payment periodicity of a four-bond portfolio. For 
simplicity, accept default values for the end-of-month payment rule (rule in 
effect) and day-count basis (actual/actual). Also, synchronize the coupon 
payment structure to the maturity date (no odd first or last coupon dates). Any 
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inputs for which defaults are accepted are set to empty matrices ([]) as 
placeholders where appropriate. 

Settle     = '15-Jan-1995';
Maturity   = datenum(['03-Apr-2020'; '14-May-2025'; ...
                      '09-Jun-2019'; '25-Feb-2019']);
Face       = [1000; 1000; 1000; 1000];
CouponRate = [0; 0.05; 0; 0.055];
Periods    = [0; 2; 0; 2];

Also, specify the points on the yield curve for each bond.

Yields = [0.078; 0.09; 0.075; 0.085];

Step 2. Use Financial Toolbox functions to calculate the true bond prices as the 
sum of the quoted price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields,... 
CouponRate,Settle, Maturity, Periods,...
[], [], [], [], [], [], Face);

Prices  =  CleanPrice + AccruedInterest;

Step 3. Assume the value of each bond is $25,000, and determine the quantity 
of each bond such that the portfolio value is $100,000.

BondAmounts = 25000 ./ Prices;

Step 4. Compute the portfolio price for a rolling series of settlement dates over 
a range of yields. The evaluation dates occur annually on January 15, 
beginning on 15-Jan-1995 (settlement) and extending out to 15-Jan-2018. 
Thus, this step evaluates portfolio price on a grid of time of progression (dT) and 
interest rates (dY).

dy = -0.05:0.005:0.05;               % Yield changes

D  = datevec(Settle);                % Get date components
dt = datenum(D(1):2018, D(2), D(3)); % Get evaluation dates
[dT, dY]  =  meshgrid(dt, dy); % Create grid

NumTimes  =  length(dt); % Number of time steps
NumYields =  length(dy); % Number of yield changes
NumBonds  =  length(Maturity); % Number of bonds
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% Preallocate vector
Prices = zeros(NumTimes*NumYields, NumBonds);

Now that the grid and price vectors have been created, compute the price of 
each bond in the portfolio on the grid one bond at a time.

for i = 1:NumBonds

[CleanPrice, AccruedInterest] = bndprice(Yields(i)+... 
dY(:), CouponRate(i), dT(:), Maturity(i), Periods(i),...
[], [], [], [], [], [], Face(i));

Prices(:,i) = CleanPrice + AccruedInterest;

end

Scale the bond prices by the quantity of bonds.

Prices = Prices * BondAmounts;

Reshape the bond values to conform to the underlying evaluation grid. 

Prices = reshape(Prices, NumYields, NumTimes);

Step 5. Plot the price of the portfolio as a function of settlement date and a 
range of yields, and as a function of the change in yield (dY). This plot 
illustrates the interest rate sensitivity of the portfolio as time progresses (dT), 
under a range of interest rate scenarios. With the following graphics 
commands, you can visualize the three-dimensional surface relative to the 
current portfolio value (i.e., $100,000).

figure                   % Open a new figure window
surf(dt, dy, Prices)     % Draw the surface

Add the base portfolio value to the existing surface plot.

hold on                  % Add the current value for reference
basemesh = mesh(dt, dy, 100000*ones(NumYields, NumTimes));

Make it transparent, plot it so the price surface shows through, and draw a box 
around the plot.
0
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set(basemesh, 'facecolor', 'none');
set(basemesh, 'edgecolor', 'm');
set(gca, 'box', 'on');

Plot the x-axis using two-digit year (YY format) labels for ticks.

dateaxis('x', 11);

Add axis labels and set the three-dimensional viewpoint. MATLAB produces 
the figure.

xlabel('Evaluation Date (YY Format)');
ylabel('Change in Yield');
zlabel('Portfolio Price');
hold off
view(-25,25);

MATLAB three-dimensional graphics allow you to visualize the interest rate 
risk experienced by a bond portfolio over time. This example assumed parallel 
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shifts in the term structure, but it might similarly have allowed other 
components to vary, such as the level and slope.

Constructing Greek-Neutral Portfolios of European 
Stock Options
The option sensitivity measures familiar to most option traders are often 
referred to as the greeks: delta, gamma, vega, lambda, rho, and theta. Delta is 
the price sensitivity of an option with respect to changes in the price of the 
underlying asset. It represents a first-order sensitivity measure analogous to 
duration in fixed income markets. Gamma is the sensitivity of an option’s delta 
to changes in the price of the underlying asset, and represents a second-order 
price sensitivity analogous to convexity in fixed income markets. Vega is the 
price sensitivity of an option with respect to changes in the volatility of the 
underlying asset. See “Pricing and Analyzing Equity Derivatives” on page 2-33 
or the “Glossary” for other definitions. 

The greeks of a particular option are a function of the model used to price the 
option. However, given enough different options to work with, a trader can 
construct a portfolio with any desired values for its greeks. For example, to 
insulate the value of an option portfolio from small changes in the price of the 
underlying asset, one trader might construct an option portfolio whose delta is 
zero. Such a portfolio is then said to be “delta neutral.” Another trader may 
wish to protect an option portfolio from larger changes in the price of the 
underlying asset, and so might construct a portfolio whose delta and gamma 
are both zero. Such a portfolio is both delta and gamma neutral. A third trader 
may wish to construct a portfolio insulated from small changes in the volatility 
of the underlying asset in addition to delta and gamma neutrality. Such a 
portfolio is then delta, gamma, and vega neutral.

Using the Black-Scholes model for European options, this example creates an 
equity option portfolio that is simultaneously delta, gamma, and vega neutral. 
The value of a particular greek of an option portfolio is a weighted average of 
the corresponding greek of each individual option. The weights are the 
quantity of each option in the portfolio. Hedging an option portfolio thus 
involves solving a system of linear equations, an easy process in MATLAB. 
This example M-file is ftspex4.m.

Step 1. Create an input data matrix to summarize the relevant information. 
Each row of the matrix contains the standard inputs to the Financial Toolbox 
Black-Scholes suite of functions: column 1 contains the current price of the 
2
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underlying stock; column 2 the strike price of each option; column 3 the time 
to-expiry of each option in years; column 4 the annualized stock price volatility; 
and column 5 the annualized dividend rate of the underlying asset. Note that 
rows 1 and 3 are data related to call options, while rows 2 and 4 are data related 
to put options.

DataMatrix = [100.000  100  0.2  0.3   0        % Call
              119.100  125  0.2  0.2   0.025    % Put
               87.200   85  0.1  0.23  0        % Call
              301.125  315  0.5  0.25  0.0333]  % Put

Also, assume the annualized risk-free rate is 10 percent and is constant for all 
maturities of interest.

RiskFreeRate = 0.10;

For clarity, assign each column of DataMatrix to a column vector whose name 
reflects the type of financial data in the column.

StockPrice   = DataMatrix(:,1);
StrikePrice  = DataMatrix(:,2);
ExpiryTime   = DataMatrix(:,3);
Volatility   = DataMatrix(:,4);
DividendRate = DataMatrix(:,5);

Step 2. Based on the Black-Scholes model, compute the prices, as well as the 
delta, gamma, and vega sensitivity greeks of each of the four options. Note that 
the functions blsprice and blsdelta have two outputs, while blsgamma and 
blsvega have only one. The price and delta of a call option differ from the price 
and delta of an otherwise equivalent put option, in contrast to the gamma and 
vega sensitivities, which are valid for both calls and puts.

[CallPrices, PutPrices] = blsprice(StockPrice, StrikePrice,... 
RiskFreeRate, ExpiryTime, Volatility, DividendRate);

[CallDeltas, PutDeltas] = blsdelta(StockPrice,... 
StrikePrice, RiskFreeRate, ExpiryTime, Volatility,... 
DividendRate);

Gammas = blsgamma(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';
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Vegas  = blsvega(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';

Extract the prices and deltas of interest to account for the distinction between 
call and puts.

Prices = [CallPrices(1) PutPrices(2) CallPrices(3)... 
PutPrices(4)];

Deltas = [CallDeltas(1) PutDeltas(2) CallDeltas(3)... 
PutDeltas(4)];

Step 3. Now, assuming an arbitrary portfolio value of $17,000, set up and solve 
the linear system of equations such that the overall option portfolio is 
simultaneously delta, gamma, and vega-neutral. The solution computes the 
value of a particular greek of a portfolio of options as a weighted average of the 
corresponding greek of each individual option in the portfolio. The system of 
equations is solved using the backslash (\) operator discussed in “Solving 
Simultaneous Linear Equations” on page 1-13.

A = [Deltas; Gammas; Vegas; Prices];
b = [0; 0; 0; 17000];
OptionQuantities = A\b; % Quantity (number) of each option.

Step 4. Finally, compute the market value, delta, gamma, and vega of the 
overall portfolio as a weighted average of the corresponding parameters of the 
component options. The weighted average is computed as an inner product of 
two vectors.

PortfolioValue =  Prices * OptionQuantities;
PortfolioDelta =  Deltas * OptionQuantities;
PortfolioGamma =  Gammas * OptionQuantities;
PortfolioVega  =  Vegas  * OptionQuantities;

The example ftspex4.m performs these computations and displays the output 
on the screen.
4
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Option  Price    Delta    Gamma    Vega     Quantity
   1   6.3441   0.5856   0.0290  17.4293   22332.6131
   2   6.6035  -0.6255   0.0353  20.0347    6864.0731
   3   4.2993   0.7003   0.0548   9.5837  -15654.8657
   4  22.7694  -0.4830   0.0074  83.5225   -4510.5153

Portfolio Value: $17000.00
Portfolio Delta:      0.00
Portfolio Gamma:     -0.00
Portfolio Vega :      0.00

You can verify that the portfolio value is $17,000 and that the option portfolio 
is indeed delta, gamma, and vega neutral, as desired. Hedges based on these 
measures are effective only for small changes in the underlying variables.

Term Structure Analysis and Interest Rate Swap 
Pricing
This example illustrates some of the term-structure analysis functions found 
in the Financial Toolbox. Specifically, it illustrates how to derive implied zero 
(spot) and forward curves from the observed market prices of coupon-bearing 
bonds. The zero and forward curves implied from the market data are then 
used to price an interest rate swap agreement.

In an interest rate swap, two parties agree to a periodic exchange of cash flows. 
One of the cash flows is based on a fixed interest rate held constant throughout 
the life of the swap. The other cash flow stream is tied to some variable index 
rate. Pricing a swap at inception amounts to finding the fixed rate of the swap 
agreement. This fixed rate, appropriately scaled by the notional principle of the 
swap agreement, determines the periodic sequence of fixed cash flows.

In general, interest rate swaps are priced from the forward curve such that the 
variable cash flows implied from the series of forward rates and the periodic 
sequence of fixed-rate cash flows have the same present value. Thus, interest 
rate swap pricing and term structure analysis are intimately related.

Step 1. Specify values for the settlement date, maturity dates, coupon rates, 
and market prices for 10 U.S. Treasury Bonds. This data allows us to price a 
five-year swap with net cash flow payments exchanged every six months. For 
simplicity, accept default values for the end-of-month payment rule (rule in 
effect) and day-count basis (actual/actual). To avoid issues of accrued interest, 
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assume that all Treasury Bonds pay semiannual coupons and that settlement 
occurs on a coupon payment date. 

Settle   = datenum('15-Jan-1999');

BondData = {'15-Jul-1999'  0.06000   99.93
            '15-Jan-2000'  0.06125   99.72
            '15-Jul-2000'  0.06375   99.70
            '15-Jan-2001'  0.06500   99.40
            '15-Jul-2001'  0.06875   99.73
            '15-Jan-2002'  0.07000   99.42
            '15-Jul-2002'  0.07250   99.32
            '15-Jan-2003'  0.07375   98.45
            '15-Jul-2003'  0.07500   97.71
            '15-Jan-2004'  0.08000   98.15};

BondData is an instance of a MATLAB cell array, indicated by the curly braces 
({}). 

Next assign the date stored in the cell array to Maturity, CouponRate, and 
Prices vectors for further processing.

Maturity   = datenum(strvcat(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices     = [BondData{:,3}]';
Period     = 2; % semiannual coupons

Step 2. Now that the data has been specified, use the term structure function 
zbtprice to bootstrap the zero curve implied from the prices of the 
coupon-bearing bonds. This implied zero curve represents the series of 
zero-coupon Treasury rates consistent with the prices of the coupon-bearing 
bonds such that arbitrage opportunities will not exist.

ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle); 

The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis (the 
periodic, six-month, interest rate is simply doubled to annualize). The first 
element of ZeroRates is the annualized rate over the next six months, the 
second element is the annualized rate over the next 12 months, and so on.
6
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Step 3. From the implied zero curve, find the corresponding series of implied 
forward rates using the term structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);

The forward curve, stored in ForwardRates, is also quoted on a semiannual 
bond basis. The first element of ForwardRates is the annualized rate applied to 
the interval between settlement and six months after settlement, the second 
element is the annualized rate applied to the interval from six months to 12 
months after settlement, and so on. This implied forward curve is also 
consistent with the observed market prices such that arbitrage activities will 
be unprofitable. Since the first forward rate is also a zero rate, the first element 
of ZeroRates and ForwardRates are the same.

Step 4. Now that you have derived the zero curve, convert it to a sequence of 
discount factors with the term structure function zero2disc.

DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);

Step 5. From the discount factors, compute the present value of the variable 
cash flows derived from the implied forward rates. For plain interest rate 
swaps, the notional principle remains constant for each payment date and 
cancels out of each side of the present value equation. The next line assumes 
unit notional principle.

PresentValue = sum((ForwardRates/Period) .* DiscountFactors);

Step 6. Compute the swap’s price (the fixed rate) by equating the present value 
of the fixed cash flows with the present value of the cash flows derived from the 
implied forward rates. Again, since the notional principle cancels out of each 
side of the equation, it is simply assumed to be 1.

SwapFixedRate = Period * PresentValue / sum(DiscountFactors);

The example ftspex5.m performs these computations and displays the output 
on the screen.

  Zero Rates  Forward Rates
    0.0614        0.0614
    0.0642        0.0670
    0.0660        0.0695
    0.0684        0.0758
    0.0702        0.0774
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    0.0726        0.0846
    0.0754        0.0925
    0.0795        0.1077
    0.0827        0.1089
    0.0868        0.1239

  Swap Price (Fixed Rate) = 0.0845

All rates are in decimal format. The swap price, 8.45%, would likely be the 
mid-point between a market-maker’s bid/ask quotes.
8



Producing Graphics with the Toolbox
Producing Graphics with the Toolbox
The Financial Toolbox and MATLAB graphics functions work together to 
produce presentation quality graphics, as these examples show. The examples 
ship with the toolbox as M-files. Try them by entering the commands directly 
or by executing the M-files. For help using MATLAB plotting functions, see 
“Creating Plots” in the MATLAB documentation.

Plotting an Efficient Frontier
This example plots the efficient frontier of a hypothetical portfolio of three 
assets. It illustrates how to specify the expected returns, standard deviations, 
and correlations of a portfolio of assets, how to convert standard deviations and 
correlations into a covariance matrix, and how to compute and plot the efficient 
frontier from the returns and covariance matrix. The example also illustrates 
how to randomly generate a set of portfolio weights, and how to add the random 
portfolios to an existing plot for comparison with the efficient frontier. The 
example M-file is ftgex1.m.

First, specify the expected returns, standard deviations, and correlation matrix 
for a hypothetical portfolio of three assets. Note the symmetry of the 
correlation matrix.

Returns      = [0.1 0.15 0.12];
STDs         = [0.2 0.25 0.18];

Correlations = [ 1   0.8  0.4
                0.8   1   0.3
                0.4  0.3   1 ];

Convert the standard deviations and correlation matrix into a 
variance-covariance matrix with the Financial Toolbox function corr2cov.

Covariances = corr2cov(STDs, Correlations);

Evaluate and plot the efficient frontier at 20 points along the frontier, using the 
function portopt and the expected returns and corresponding covariance 
matrix. Although rather elaborate constraints can be placed on the assets in a 
portfolio, for simplicity accept the default constraints and scale the total value 
of the portfolio to 1 and constrain the weights to be positive (no short-selling).

portopt(Returns, Covariances, 20)
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Now that the efficient frontier is displayed, randomly generate the asset 
weights for 1000 portfolios starting from the MATLAB initial state.

rand('state', 0)
Weights = rand(1000, 3);

The previous line of code generates three columns of uniformly distributed 
random weights, but does not guarantee they sum to 1. The following code 
segment normalizes the weights of each portfolio so that the total of the three 
weights represent a valid portfolio.

Total = sum(Weights, 2); % Add the weights
Total = Total(:,ones(3,1)); % Make size-compatible matrix
Weights = Weights./Total; % Normalize so sum = 1

Given the 1000 random portfolios just created, compute the expected return 
and risk of each portfolio associated with the weights.

[PortRisk, PortReturn] = portstats(Returns, Covariances, ...
                         Weights);

Finally, hold the current graph, and plot the returns and risks of each portfolio 
on top of the existing efficient frontier for comparison. After plotting, annotate 
the graph with a title and return the graph to default holding status (any 
subsequent plots will erase the existing data). The efficient frontier appears in 
blue, while the 1000 random portfolios appear as a set of red dots on or below 
the frontier.

hold on
plot (PortRisk, PortReturn, '.r')
title('Mean-Variance Efficient Frontier and Random Portfolios')
hold off 
0
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Plotting Sensitivities of an Option
This example creates a three-dimensional plot showing how gamma changes 
relative to price for a Black-Scholes option. Recall that gamma is the second 
derivative of the option price relative to the underlying security price. The plot 
shows a three-dimensional surface whose z-value is the gamma of an option as 
price (x-axis) and time (y-axis) vary. It adds yet a fourth dimension by showing 
option delta (the first derivative of option price to security price) as the color of 
the surface. This example M-file is ftgex2.m.

First set the price range of the options, and set the time range to one year 
divided into half-months and expressed as fractions of a year.

Range = 10:70;
Span = length(Range);
j = 1:0.5:12;
Newj = j(ones(Span,1),:)'/12;
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For each time period create a vector of prices from 10 to 70 and create a matrix 
of all ones.

JSpan = ones(length(j),1);
NewRange = Range(JSpan,:);
Pad = ones(size(Newj));

Call the toolbox gamma and delta sensitivity functions. Exercise price is $40, 
risk-free interest rate is 10%, and volatility is 0.35 for all prices and periods. 
Gamma is the z-axis, delta is the color.

ZVal = blsgamma(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
Color = blsdelta(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);

Draw the surface as a mesh, add axis labels and a title.  The axes range from 
10 to 70, 1 to 12, and -∞ to ∞.

mesh(Range, j, ZVal, Color);
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
title('Call Option Sensitivity Measures');
axis([10 70  1 12  −inf inf]);

Finally add a box around the whole plot, annotate the colors with a bar, and 
label the colorbar. 

set(gca, 'box', 'on');
colorbar('horiz');
a = findobj(gcf, 'type', 'axes');
set(get(a(2), 'xlabel'), 'string', 'Delta');
2
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Plotting Sensitivities of a Portfolio of Options
This example plots gamma as a function of price and time for a portfolio of 10 
Black-Scholes options. The plot shows a three-dimensional surface. For each 
point on the surface, the height (z-value) represents the sum of the gammas for 
each option in the portfolio weighted by the amount of each option. The x-axis 
represents changing price, and the y-axis represents time. The plot adds a 
fourth dimension by showing delta as surface color. This example M-file is 
ftgex3.m.

First set up the portfolio with arbitrary data.  Current prices range from $20 to 
$90 for each option.  Set corresponding exercise prices for each option.

Range = 20:90;
PLen = length(Range);
ExPrice = [75 70 50 55 75 50 40 75 60 35];
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Set all risk-free interest rates to 10%, and set times to maturity in days.  Set 
all volatilities to 0.35.  Set the number of options of each instrument, and 
allocate space for matrices.

Rate = 0.1*ones(10,1);
Time = [36  36  36  27  18  18  18  9  9  9];
Sigma = 0.35*ones(10,1);
NumOpt = 1000*[4  8  3  5  5.5  2  4.8  3  4.8  2.5];
ZVal = zeros(36, PLen);
Color = zeros(36, PLen);

For each instrument, create a matrix (of size Time by PLen) of prices for each 
period.

for i = 1:10
Pad = ones(Time(i),PLen);
NewR = Range(ones(Time(i),1),:);

Create a vector of time periods 1 to Time; and a matrix of times, one column for 
each price.

T = (1:Time(i))';
NewT = T(:,ones(PLen,1));

Call the toolbox gamma and delta sensitivity functions to compute gamma and 
delta.

ZVal(36−Time(i)+1:36,:) = ZVal(36−Time(i)+1:36,:) ...
+ NumOpt(i) * blsgamma(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

Color(36−Time(i)+1:36,:) = Color(36−Time(i)+1:36,:) ...
+ NumOpt(i) * blsdelta(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

end

Draw the surface as a mesh, set the viewpoint, and reverse the x-axis because 
of the viewpoint.  The axes range from 20 to 90, 0 to 36, and  -∞ to ∞.

mesh(Range, 1:36, ZVal, Color);
view(60,60);
set(gca, 'xdir','reverse');
axis([20 90  0 36  −inf inf]);
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Add a title and axis labels and draw a box around the plot. Annotate the colors 
with a bar and label the colorbar. 

title('Call Option Sensitivity Measures');
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
set(gca, 'box', 'on');
colorbar('horiz');
a = findobj(gcf, 'type', 'axes');
set(get(a(2), 'xlabel'), 'string', 'Delta');
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Functions - Categorical List
This chapter contains detailed descriptions of all the functions in the Financial 
Toolbox. The categories of functions described are:

• “Handling and Converting Dates”

• “Formatting Currency”

• “Charting Financial Data”

• “Analyzing and Computing Cash Flows”

• “Fixed-Income Securities”

• “Analyzing Portfolios”

• “Financial Statistics”

• “Pricing and Analyzing Derivatives”

• “GARCH Processes”

• “Obsolete Bond Price and Yield Functions”

• “Obsolete BDT Functions”

Handling and Converting Dates

Note  The date functions datenum, datestr, datevec, eomday, now, and 
weekday now ship with basic MATLAB. They originally shipped only with the 
Financial Toolbox. Their descriptions remain in this document for your 
convenience.

Current Time and Date

now Current date and time.

today Current date.



Date and Time Components

Date Conversion

datefind Indices of date numbers in matrix.

datevec Date components.

day Day of month.

eomdate Last date of month.

eomday Last day of month.

hour Hour of date or time.

lweekdate Date of last occurrence of weekday in month.

minute Minute of date or time.

month Month of date.

months Number of whole months between dates.

nweekdate Date of specific occurrence of weekday in month.

second Second of date or time.

thirdwednesday Third Wednesday of the month.

weekday Day of the week.

year Year of date.

yeardays Number of days in year.

date2time Time and frequency from dates

datedisp Display date entries.

datenum Create date number.

datestr Create date string.

dec2thirtytwo Decimal quotation to thirty-second. 

m2xdate MATLAB serial date number to Excel serial date number.

thirtytwo2dec Thirty-second quotation to decimal. 
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Financial Dates

1 Securities Industry Association compliant.
2 International Swap Dealer Association.
3 Public Securities Association.

time2date Dates from time and frequency

x2mdate Excel serial date number to MATLAB serial date number.

busdate Next or previous business day.

datemnth Date of day in future or past month.

datewrkdy Date of future or past workday.

days360 SIA1 Days between dates based on 360-day year.

days360e Days between dates based on 360-day year 
(European).

days360isda ISDA2 Days between dates based on 360-day year.

days360psa PSA3 Days between dates based on 360-day year.

days365 Days between dates based on 365-day year.

daysact Actual number of days between dates.

daysadd Date away from a starting date for any day-count 
basis

daysdif Days between dates for any day-count basis.

fbusdate First business date of month.

holidays Holidays and non-trading days.

isbusday True for dates that are business days.

lbusdate Last business date of month.

wrkdydif Number of working days between dates.

yearfrac Fraction of year between dates.



Coupon Bond Dates

Formatting Currency 

Charting Financial Data
The Financial Toolbox provides a set of functions that create several of the 
most commonly-used types of financial charts. The Financial Time Series 
Toolbox provides additional charting capabilities. Using time series data as 
input, the Financial Time Series Toolbox can compute the value of various 

accrfrac SIA Fraction of coupon period before settlement.

cfamounts SIA Cash flow and time mapping for bond portfolio.

cfdates SIA Cash flow dates for a fixed-income security with periodic 
payments.

cfport Portfolio form of cash flow amounts.

cftimes SIA Time factors corresponding to bond cash flow dates. 

cpncount SIA Coupon payments remaining until maturity.

cpndaten SIA Next coupon date after settlement date.

cpndatenq SIA Next quasi coupon date for fixed income security.   

cpndatep SIA Previous coupon date before settlement date.

cpndatepq SIA Previous quasi coupon date for fixed income security. 

cpndaysn SIA Number of days between settlement date and next coupon 
date.

cpndaysp SIA Number of days between previous coupon date and 
settlement date.

cpnpersz SIA Number of days in coupon period containing settlement 
date.

cur2frac Decimal currency value to fractional value.

cur2str Bank formatted text.

frac2cur Fractional currency value to decimal value.
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financial indicators and plot the results. Complete information may be found 
in the Financial Time Series documentation.

Analyzing and Computing Cash Flows

Annuities

Amortization and Depreciation

bolling Bollinger band chart.

candle Candlestick chart.

dateaxis Convert serial-date axis labels to calendar-date axis labels.

highlow High, low, open, close chart.

movavg Leading and lagging moving averages chart.

pointfig Point and figure chart.

annurate Periodic interest rate of annuity.

annuterm Number of periods to obtain value.

amortize Amortization.

depfixdb Fixed declining-balance depreciation.

depgendb General declining-balance depreciation.

deprdv Remaining depreciable value.

depsoyd Sum of years’ digits depreciation.

depstln Straight-line depreciation.



Present Value

Future Value

Payment Calculations

Rates of Return

Cash Flow Sensitivities

pvfix Present value with fixed periodic payments.

pvvar Present value of varying cash flow.

fvdisc Future value of discounted security.

fvfix Future value with fixed periodic payments.

fvvar Future value of varying cash flow.

payadv Periodic payment given number of advance payments.

payodd Payment of loan or annuity with odd first period.

payper Periodic payment of loan or annuity.

payuni Uniform payment equal to varying cash flow.

effrr Effective rate of return.

irr Internal rate of return.

mirr Modified internal rate of return.

nomrr Nominal rate of return.

taxedrr After-tax rate of return.

xirr Internal rate of return for nonperiodic cash flow.

cfconv Cash flow convexity.

cfdur Cash flow duration and modified duration.
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Fixed-Income Securities

Accrued Interest

Prices

Term Structure of Interest Rates

acrubond Accrued interest of security with periodic interest 
payments.

acrudisc Accrued interest of discount security paying at maturity.

bndprice SIA Price a fixed income security from yield to maturity.

prdisc Price of discounted security.

prmat Price with interest at maturity.

prtbill Price of Treasury bill.

disc2zero Zero curve given a discount curve.

fwd2zero Zero curve given a forward curve.

prbyzero Price bonds in a portfolio by a set of zero curves.

pyld2zero Zero curve given a par yield curve.

tbl2bond Treasury bond parameters given Treasury bill parameters.

tr2bonds Term-structure parameters given Treasury bond 
parameters.

zbtprice Zero curve bootstrapping from coupon bond data given price.

zbtyield Zero curve bootstrapping from coupon bond data given 
yield.

zero2disc Discount curve given a zero curve.

zero2fwd Forward curve given a zero curve.

zero2pyld Par yield curve given a zero curve.



Yields

Spreads

Interest Rate Sensitivities

Analyzing Portfolios

Portfolio Analysis

beytbill Bond equivalent yield for Treasury bill.

bndyield SIA Yield to maturity for fixed income security.

discrate Bank discount rate of a money market security.

ylddisc Yield of discounted security.

yldmat Yield of security with interest at maturity.

yldtbill Yield of Treasury bill.

bndspread SIA Static spread over spot curve

bndconvp SIA Bond convexity given price.

bndconvy SIA Bond convexity given yield.

bnddurp SIA Bond duration given price.

bnddury SIA Bond duration given yield.

abs2active Convert constraints from absolute format to active format

active2abs Convert constraints from active format to absolute format

corr2cov Convert standard deviation and correlation to covariance.

cov2corr Convert covariance to standard deviation and correlation 
coefficient.

ewstats Expected return and covariance from return time series.

frontcon Mean-variance efficient frontier.

pcalims Linear inequalities for individual asset allocation. 
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pcgcomp Linear inequalities for asset group comparison constraints.

pcglims Linear inequalities for asset group minimum and maximum 
allocation. 

pcpval Linear inequalities for fixing total portfolio value. 

portalloc Optimal capital allocation to efficient frontier portfolios.

portcons Portfolio constraints.

portopt Portfolios on constrained efficient frontier.

portrand Randomized portfolio risks, returns, and weights.

portstats Portfolio expected return and risk.

portsim Monte Carlo simulation of correlated asset returns.

portvrisk Portfolio value at risk

ret2tick Convert a return series to a price series

tick2ret Convert a price series to a return series
0



Financial Statistics

Expectation Conditional Maximization

Pricing and Analyzing Derivatives

Option Valuation and Sensitivity

ecmnfish Fisher information matrix

ecmnhess Hessian of negative log-likelihood function

ecmninit Initial mean and covariance

ecmnmle Mean and covariance of incomplete multivariate normal 
data

ecmnobj Multivariate normal negative log-likelihood function

ecmnstd Standard errors for mean and covariance of incomplete data

binprice Binomial put and call pricing.

blkimpv Implied volatility for futures options from Black’s model.

blkprice Black’s model for pricing futures options.

blsdelta Black-Scholes sensitivity to underlying price change.

blsgamma Black-Scholes sensitivity to underlying delta change.

blsimpv Black-Scholes implied volatility.

blslambda Black-Scholes elasticity.

blsprice Black-Scholes put and call pricing.

blsrho Black-Scholes sensitivity to interest rate change.

blstheta Black-Scholes sensitivity to time-until-maturity change.

blsvega Black-Scholes sensitivity to underlying price volatility.

opprofit Option profit.
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GARCH Processes
The Financial Toolbox provides these representative functions to help you 
familiarize yourself with Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) in the MATLAB context. The GARCH Toolbox 
provides a more comprehensive and integrated computing environment that 
includes maximum likelihood parameter estimation, volatility forecasting, 
Monte Carlo simulation, diagnostic and hypothesis testing, graphical analysis, 
and data manipulation. For information see the GARCH Toolbox User’s Guide 
or the financial products Web page at 
http://www.mathworks.com/products/finprod/.

Univariate GARCH Processes

Obsolete Bond Price and Yield Functions
The functions listed in this table are obsolete, and their descriptions have been 
removed from the documentation. They have been replaced with the 
SIA-compliant functions bndprice and bndyield. For compatibility purposes, 
the obsolete functions remain in the product. Type help function_name at the 
MATLAB command line for a description.

ugarch GARCH parameter estimation.

ugarchllf Log-likelihood objective function.

ugarchpred Forecast conditional variance.

ugarchsim Simulate GARCH process.
2



Obsolete Functions

Obsolete BDT Functions
The functions bdtbond and bdttrans are obsolete, and their descriptions have 
been removed from the documentation. These functions have been replaced by 
BDT functions in the Financial Derivatives Toolbox. For compatibility 
purposes, the obsolete functions remain in the product. Type 
help function_name at the MATLAB command line for a description.

prbond Price of security with regular periodic interest payments. 

proddf Price with odd first period. 

proddfl Price with odd first and last periods and settlement in first 
period. 

proddl Price with odd last period. 

yldbond Yield to maturity of bond. 

yldoddf Yield of security with odd first period.

yldoddfl Yield of security with odd first and last periods and settlement 
in first period. 

yldoddl Yield of security with odd last period. 
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abs2active
5abs2activePurpose Convert constraints from absolute format to active format

Syntax ActiveConSet = abs2active(AbsConSet, Index)

Arguments

Description ActiveConSet = abs2active(AbsConSet, Index) transforms a constraint 
matrix to an equivalent matrix expressed in active weight format (relative to 
the index). The transformation equation is

Therefore

The initial constraint matrix consists of NCONSTRAINTS portfolio linear 
inequality constraints expressed in absolute weight format. The index portfolio 
vector contains NASSETS assets.

ActiveConSet is the transformed portfolio linear inequality constraint matrix 
expressed in active weight format, also of the form [A b] such that A*w <= b. 
The value w represents a vector of active asset weights (relative to the index 
portfolio) whose elements sum to zero.

AbsConSet Portfolio linear inequality constraint matrix expressed in 
absolute weight format. AbsConSet is formatted as [A b] 
such that A*w <= b, where A is a number of constraints 
(NCONSTRAINTS) by number of assets (NASSETS) weight 
coefficient matrix, and b and w are column vectors of 
length NASSETS. The value w represents a vector of 
absolute asset weights whose elements sum to the total 
portfolio value.

See the output ConSet from portcons for additional 
details about constraint matrices. 

Index NASSETS-by-1 vector of index portfolio weights. The sum 
of the index weights must equal the total portfolio value 
(e.g., a standard portfolio optimization imposes a 
sum-to-one budget constraint).

Awabsolute A wactive windex+( ) babsolute≤=

Awactive babsolute Awindex–≤ bactive=
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See Also active2abs, pcalims, pcgcomp, pcglims, pcpval, portcons
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active2abs
5active2absPurpose Convert constraints from active format to absolute format

Syntax AbsConSet = active2abs(ActiveConSet, Index)

Arguments

Description AbsConSet = active2abs(ActiveConSet, Index) transforms a constraint 
matrix to an equivalent matrix expressed in absolute weight format. The 
transformation equation is

Therefore

The initial constraint matrix consists of NCONSTRAINTS portfolio linear 
inequality constraints expressed in active weight format (relative to the index 
portfolio). The index portfolio vector contains NASSETS assets.

AbsConSet is the transformed portfolio linear inequality constraint matrix 
expressed in absolute weight format, also of the form [A b] such that A*w <= b. 
The value w represents a vector of active asset weights (relative to the index 
portfolio) whose elements sum to the total portfolio value.

ActiveConSet Portfolio linear inequality constraint matrix expressed in 
active weight format. ActiveConSet is formatted as [A b] 
such that A*w <= b, where A is a number of constraints 
(NCONSTRAINTS) by number of assets (NASSETS) weight 
coefficient matrix, and b and w are column vectors of 
length NASSETS. The value w represents a vector of active 
asset weights (relative to the index portfolio) whose 
elements sum to 0.

See the output ConSet from portcons for additional 
details about constraint matrices. 

Index NASSETS-by-1 vector of index portfolio weights. The sum 
of the index weights must equal the total portfolio value 
(e.g., a standard portfolio optimization imposes a 
sum-to-one budget constraint).

Awactive A wabsolute windex–( ) bactive≤=

Awabsolute bactive Awindex+≤ babsolute=
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See Also abs2active, pcalims, pcgcomp, pcglims, pcpval, portcons
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accrfrac
5accrfracPurpose Fraction of coupon period before settlement (SIA compliant)

Syntax Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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Vector arguments must have consistent dimensions, or they must be scalars.

Description Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate)  returns the 
fraction of the coupon period before settlement. This function is used for 
computing accrued interest.

Examples Given data for three bonds

Settle = '14-Mar-1997';
Maturity = ['30-Nov-2000'
            '31-Dec-2000'
            '31-Jan-2001'];
Period = 2;
Basis = 0;
EndMonthRule = 1;

Execute the function.

Fraction = accrfrac(Settle, Maturity, Period, Basis,... 
                    EndMonthRule)
Fraction =
    0.5714
    0.4033
    0.2320

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.
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See Also cfamounts, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, 
cpndaysn, cpndaysp, cpnpersz
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acrubond
5acrubondPurpose Accrued interest of security with periodic interest payments

Syntax AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face, 
CouponRate, Period, Basis)

Arguments

Description AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face, 
CouponRate, Period, Basis)  returns the accrued interest for a security with 
periodic interest payments. This function computes the accrued interest for 
securities with standard, short, and long first coupon periods.

Note  cfamounts or accrfrac is recommended when calculating accrued 
interest beyond the first period. 

Examples AccruInterest = acrubond('31-jan-1983',  '1-mar-1993', ...
    '31-jul-1983',  100,  0.1,  2,  0)

AccruInterest =
                0.8011

IssueDate Enter as serial date number or date string.

Settle Enter as serial date number or date string.

FirstCouponDate Enter as serial date number or date string.

Face Redemption (par, face) value.

CouponRate Enter as decimal fraction.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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See Also accrfrac, acrudisc, bndprice, bndyield, cfamounts, datenum
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acrudisc
5acrudiscPurpose Accrued interest of discount security paying at maturity

Syntax AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period, 
Basis)

Arguments

Description AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period, 
Basis) returns the accrued interest of a discount security paid at maturity.

Examples AccruInterest = acrudisc('05/01/1992',  '07/15/1992', ...
            100,  0.1,  2,  0)

AccruInterest =
                2.0604 (or $2.06)

See Also acrubond, prdisc, prmat, ylddisc, yldmat

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.  
Formula D.

Settle Enter as serial date number or date string. Settle must be earlier 
than or equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Discount rate of the security. Enter as decimal fraction.

Period (Optional) Coupons per year of the bond. A vector of integers. 
Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12. 

Basis (Optional) Day-count basis of the instrument. A vector of integers. 
0 = actual/actual (default), 1 = 30/360 (SIA), 2 = actual/360, 
3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA), 
6 = 30/360 (European), 7 = actual/365 (Japanese).
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amortize
5amortizePurpose Amortization schedule

Syntax [Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods, 
PresentValue, FutureValue, Due)

Arguments

Description [Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods, 
PresentValue, FutureValue, Due)  returns the principal and interest 
payments of a loan, the remaining balance of the original loan amount, and the 
periodic payment.

Examples Compute an amortization schedule for a conventional 30-year, fixed-rate 
mortgage with fixed monthly payments. Assume a fixed rate of 12% APR and 
an initial loan amount of $100,000.

Rate         = 0.12/12; % 12 percent APR = 1 percent per month
NumPeriods   = 30*12; % 30 years = 360 months
PresentValue = 100000;

[Principal, Interest, Balance, Payment] = amortize(Rate, 
NumPeriods, PresentValue);

Rate Interest rate per period, as a decimal fraction.

NumPeriods Number of payment periods.

PresentValue Present value of the loan.

FutureValue (Optional) Future value of the loan. Default = 0.

Due (Optional) When payments are due: 0 = end of period 
(default), or 1 = beginning of period.

Principal Principal paid in each period. A 1-by-NumPeriods vector.

Interest Interest paid in each period. A 1-by-NumPeriods vector.

Balance Remaining balance of the loan in each payment period. A 
1-by-NumPeriods vector.

Payment Payment per period. A scalar.
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The output argument Payment contains the fixed monthly payment.

format bank

Payment

Payment =

       1028.61

Finally, summarize the amortization schedule graphically by plotting the 
current outstanding loan balance, the cumulative principal, and the interest 
payments over the life of the mortgage. In particular, note that total interest 
paid over the life of the mortgage exceeds $270,000, far in excess of the original 
loan amount!

plot(Balance,'b'), hold('on')
plot(cumsum(Principal),'--k')
plot(cumsum(Interest),':r')

xlabel('Payment Month')
ylabel('Dollars')
grid('on')
title('Outstanding Balance, Cumulative Principal & Interest')
legend('Outstanding Balance', 'Cumulative Principal', ... 
'Cumulative Interest', 'TL')
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The solid blue line represents the declining principal over the 30-year period. 
The dotted red line indicates the increasing cumulative interest payments. 
Finally, the dashed black line represents the cumulative principal payments, 
reaching $100,000 after 30 years.

See Also annurate, annuterm, payadv, payodd, payper
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annurate
5annuratePurpose Periodic interest rate of annuity

Syntax Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue, Due)

Arguments

Description Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue, 
Due) returns the periodic interest rate paid on a loan or annuity.

Examples Find the periodic interest rate of a four-year, $5000 loan with a $130 monthly 
payment made at the end of each month.

Rate = annurate(4*12, 130, 5000, 0, 0)

Rate =
      0.0094 

(Rate multiplied by 12 gives an annual interest rate of 11.32% on the loan.)

See Also amortize, annuterm, bndyield, irr

NumPeriods Number of payment periods.

Payment Payment per period.

PresentValue Present value of the loan or annuity.

FutureValue (Optional) Future value of the loan or annuity. Default = 0.

Due (Optional) When payments are due: 0 = end of period 
(default), or 1 = beginning of period.
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annuterm
5annutermPurpose Number of periods to obtain value

Syntax NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue, Due)

Arguments

Description NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue, 
Due)  calculates the number of periods needed to obtain a future value. To 
calculate the number of periods needed to pay off a loan, enter the payment or 
the present value as a negative value.

Examples A savings account has a starting balance of $1500. $200 is added at the end of 
each month and the account pays 9% interest, compounded monthly. How 
many years will it take to save $5,000?

NumPeriods = annuterm(0.09/12, 200, 1500, 5000, 0)

NumPeriods =
         15.68 months or 1.31 years.

See Also annurate, amortize, fvfix, pvfix

Rate Interest rate per period, as a decimal fraction.

Payment Payment per period.

PresentValue Present value.

FutureValue (Optional) Future value. Default = 0.

Due (Optional) When payments are due: 0 = end of period 
(default), or 1 = beginning of period.
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beytbill
5beytbillPurpose Bond equivalent yield for Treasury bill

Syntax Yield = beytbill(Settle, Maturity, Discount)

Arguments

Description Yield = beytbill(Settle, Maturity, Discount) returns the bond 
equivalent yield for a Treasury bill.

Examples The settlement date of a Treasury bill is February 11, 2000, the maturity date 
is August 7, 2000, and the discount rate is 5.77%. The bond equivalent yield is

Yield = beytbill('2/11/2000', '8/7/2000', 0.0577)

Yield =
        0.0602

See Also datenum, prtbill, yldtbill

Settle Enter as serial date number or date string. Settle must be earlier 
than or equal to Maturity.

Maturity Enter as serial date number or date string.

Discount Discount rate of the Treasury bill. Enter as decimal fraction.
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binprice
5binpricePurpose Binomial put and call pricing

Syntax [AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time, 
Increment, Volatility, Flag, DividendRate, Dividend, ExDiv)

Arguments

Description [AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time, 
Increment, Volatility, Flag, DividendRate, Dividend, ExDiv)  prices 
an option using the Cox-Ross-Rubinstein binomial pricing model.

Price Underlying asset price. A scalar.

Strike Option exercise price. A scalar.

Rate Risk-free interest rate. A scalar. Enter as a decimal fraction.

Time Option’s time until maturity in years. A scalar. 

Increment Time increment. A scalar. Increment is adjusted so that the 
length of each interval is consistent with the maturity time of 
the option. (Increment is adjusted so that Time divided by 
Increment equals an integer number of increments.)

Volatility Asset’s volatility. A scalar.

Flag Specifies whether the option is a call (Flag = 1) or a put 
(Flag = 0). A scalar.

DividendRate (Optional) The dividend rate, as a decimal fraction. A scalar. 
Default = 0. If you enter a value for DividendRate, set 
Dividend and ExDiv = 0 or do not enter them. If you enter 
values for Dividend and ExDiv, set DividendRate = 0.

Dividend (Optional) The dividend payment at an ex-dividend date, 
ExDiv. A row vector. For each dividend payment, there must be 
a corresponding ex-dividend date. Default = 0. If you enter 
values for Dividend and ExDiv, set DividendRate = 0.

ExDiv (Optional) Ex-dividend date, specified in number of periods. A 
row vector. Default = 0.
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Examples For a put option, the asset price is $52, option exercise price is $50, risk-free 
interest rate is 10%, option matures in 5 months, volatility is 40%, and there is 
one dividend payment of $2.06 in 3-1/2 months.

[Price, Option] = binprice(52, 50, 0.1, 5/12, 1/12, 0.4, 0, 0,... 
2.06, 3.5)

returns the asset price and option value at each node of the binary tree.

Price =

   52.0000   58.1367   65.0226   72.7494   79.3515   89.0642
         0   46.5642   52.0336   58.1706   62.9882   70.6980
         0         0   41.7231   46.5981   49.9992   56.1192
         0         0         0   37.4120   39.6887   44.5467
         0         0         0         0   31.5044   35.3606
         0         0         0         0         0   28.0688
Option =

    4.4404    2.1627    0.6361         0         0         0
         0    6.8611    3.7715    1.3018         0         0
         0         0   10.1591    6.3785    2.6645         0
         0         0         0   14.2245   10.3113    5.4533
         0         0         0         0   18.4956   14.6394
         0         0         0         0         0   21.9312

See Also blkprice, blsprice

References Cox, J.; S. Ross; and M. Rubenstein, “Option Pricing: A Simplified Approach”, 
Journal of Financial Economics 7, Sept. 1979, pp. 229 - 263

Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter 14.
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5blkimpvPurpose Implied volatility for futures options from Black’s model 

Syntax Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, ...     
Tolerance, Class)

Arguments

Description Volatility = blkimpv(Price, Strike, Rate, Time, CallPrice, 
MaxIterations, Tolerance) using Black’s model computes the implied 
volatility of a futures price from the market value of European futures options.

Volatility is the implied volatility of the underlying asset derived from 
European futures option prices, expressed as a decimal number. If no solution 
is found, blkimpv returns NaN.

Any input argument may be a scalar, vector, or matrix. When a value is a 
scalar, that value is used to compute the implied volatility of all the options. If 

Price Current price of the underlying asset (a futures contract).

Strike Exercise price of the futures option.

Rate Annualized, continuously compounded risk-free rate of 
return over the life of the option, expressed as a positive 
decimal number.

Time Time to expiration of the option, expressed in years.

Value Price of a European futures option from which the implied 
volatility of the underlying asset is derived.

Limit (Optional) Positive scalar representing the upper bound of 
the implied volatility search interval. If Limit is empty or 
unspecified, the default = 10, or 1000% per annum.

Tolerance (Optional) Implied volatility termination tolerance. A 
positive scalar. Default = 1e-6.

Class (Optional) Option class (call or put) indicating the option 
type from which the implied volatility is derived. May be 
either a logical indicator or a cell array of characters. To 
specify call options, set Class = true or Class = {'call'}; 
to specify put options, set Class = false or 
Class = {'put'}. If Class is empty or unspecified, the 
default is a call option.
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more than one input is a vector or matrix, the dimensions of all non-scalar 
inputs must be identical.

Rate and Time must be expressed in consistent units of time. 

Examples Consider a European call futures option that expires in four months, trading at 
$1.1166, with an exercise price of $20. Assume that the current underlying 
futures price is also $20 and that the risk-free rate is 9% per annum. 
Furthermore, assume that you are interested in implied volatilities no greater 
than 0.5 (50% per annum). Under these conditions, the following commands all 
return an implied volatility of 0.25, or 25% per annum.

Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5)
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], {'Call'})
Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], true)

See Also blkprice, blsimpv, blsprice

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003, pp. 287-288.

Black, Fischer, “The Pricing of Commodity Contracts,” Journal of Financial 
Economics, March 3, 1976, pp. 167-79.
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5blkpricePurpose Black’s model for pricing futures options

Syntax [Call, Put] = blkprice(Price, Strike, Rate, Time, Volatility)

Arguments

Description [Call, Put] = blkprice(ForwardPrice, Strike, Rate, Time, 
Volatility) uses Black’s model to compute European put and call futures 
option prices. 

Any input argument may be a scalar, vector, or matrix. When a value is a 
scalar, that value is used to compute the implied volatility from all options. If 
more than one input is a vector or matrix, the dimensions of all non-scalar 
inputs must be identical.

Rate, Time, and Volatility must be expressed in consistent units of time. 

Examples Consider European futures options with exercise prices of $20 that expire in 
four months. Assume that the current underlying futures price is also $20 with 
a volatility of 25% per annum. The risk-free rate is 9% per annum. Using this 
data

 [Call, Put] = blkprice(20, 20, 0.09, 4/12, 0.25)

returns equal call and put prices of $1.1166.

See Also binprice, blsprice

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003, pp. 287-288.

Price Current price of the underlying asset (a futures contract).

Strike Strike or exercise price of the futures option. 

Rate Annualized, continuously compounded, risk-free rate of 
return over the life of the option, expressed as a positive 
decimal number.

Time Time until expiration of the option, expressed in years. Must 
be greater than 0.

Volatility Annualized futures price volatility, expressed as a positive 
decimal number.
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Black, Fischer, “The Pricing of Commodity Contracts,” Journal of Financial 
Economics, March 3, 1976, pp. 167-179.
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5blsdeltaPurpose Black-Scholes sensitivity to underlying price change

Syntax [CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time, 
Volatility, Yield)

Arguments

Description [CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time, 
Volatility, Yield)  returns delta, the sensitivity in option value to change 
in the underlying asset price. Delta is also known as the hedge ratio. 

Examples [CallDelta, PutDelta] = blsdelta(50, 50, 0.1, 0.25, 0.3, 0)

CallDelta =
    0.5955

PutDelta =
   -0.4045

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate of return 
over the life of the option, expressed as a positive decimal 
number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized standard 
deviation of the continuously compounded asset return), 
expressed as a positive decimal number.

Yield (Optional) Annualized, continuously compounded yield of the 
underlying asset over the life of the option, expressed as a 
decimal number. (Default = 0.) For example, for options 
written on stock indices, Yield could represent the dividend 
yield. For currency options, Yield could be the foreign 
risk-free interest rate. 
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See Also blsgamma, blslambda, blsprice, blsrho, blstheta, blsvega

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003.
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5blsgammaPurpose Black-Scholes sensitivity to underlying delta change

Syntax Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Description Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield)  
returns gamma, the sensitivity of delta to change in the underlying asset price.

Examples Gamma = blsgamma(50, 50, 0.12, 0.25, 0.3, 0)

Gamma =
   0.0512

See Also blsdelta, blslambda, blsprice, blsrho, blstheta, blsvega

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003.

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate of return 
over the life of the option, expressed as a positive decimal 
number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized standard 
deviation of the continuously compounded asset return), 
expressed as a positive decimal number.

Yield (Optional) Annualized, continuously compounded yield of the 
underlying asset over the life of the option, expressed as a 
decimal number. (Default = 0.) For example, for options 
written on stock indices, Yield could represent the dividend 
yield. For currency options, Yield could be the foreign 
risk-free interest rate. 
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5blsimpvPurpose Black-Scholes implied volatility

Syntax Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, ...    
Yield, Tolerance, Class)

Arguments Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate of 
return over the life of the option, expressed as a positive 
decimal number.

Time Time to expiration of the option, expressed in years.

Value Price of a European option from which the implied volatility 
of the underlying asset is derived.

Limit (Optional) Positive scalar representing the upper bound of 
the implied volatility search interval. If Limit is empty or 
unspecified, the default = 10, or 1000% per annum.

Yield (Optional) Annualized, continuously compounded yield of the 
underlying asset over the life of the option, expressed as a 
decimal number. (Default = 0.) For example, for options 
written on stock indices, Yield could represent the dividend 
yield. For currency options, Yield could be the foreign 
risk-free interest rate. 

Tolerance (Optional) Implied volatility termination tolerance. A 
positive scalar. Default = 1e-6.

Class (Optional) Option class (call or put) indicating the option 
type from which the implied volatility is derived. May be 
either a logical indicator or a cell array of characters. To 
specify call options, set Class = true or Class = {'call'}; 
to specify put options, set Class = false or 
Class = {'put'}. If Class is empty or unspecified, the 
default is a call option.
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Description Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit,     
Yield, Tolerance, Class)  using a Black-Scholes model computes the 
implied volatility of an underlying asset from the market value of European 
call and put options.

Volatility is the implied volatility of the underlying asset derived from 
European option prices, expressed as a decimal number. If no solution is found, 
blsimpv returns NaN.

Any input argument may be a scalar, vector, or matrix. When a value is a 
scalar, that value is used to price all the options. If more than one input is a 
vector or matrix, the dimensions of all non-scalar inputs must be identical.

Rate, Time, and Yield must be expressed in consistent units of time. 

Examples Consider a European call option trading at $10 with an exercise price of $95 
and three months until expiration. Assume that the underlying stock pays no 
dividend and trades at $100. The risk-free rate is 7.5% per annum. 
Furthermore, assume that you are interested in implied volatilities no greater 
than 0.5 (50% per annum). 

Under these conditions, the following statements all compute an implied 
volatility of 0.3130, or 31.30% per annum.

Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5)
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], {'Call'})
Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], true)

See Also blsdelta, blsgamma, blslambda, blsprice, blsrho, blstheta

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003.

Luenberger, David G., Investment Science, Oxford University Press, 1998.
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5blslambdaPurpose Black-Scholes elasticity

Syntax [CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility, 
Yield)

Arguments

Description [CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility, 
yield)  returns the elasticity of an option. CallEl is the call option elasticity 
or leverage factor, and PutEl is the put option elasticity or leverage factor. 
Elasticity (the leverage of an option position) measures the percent change in 
an option price per one percent change in the underlying asset price.

Examples [CallEl, PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)

CallEl =
    8.1274

PutEl =
   -8.6466

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate of return 
over the life of the option, expressed as a positive decimal 
number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized standard 
deviation of the continuously compounded asset return), 
expressed as a positive decimal number.

Yield (Optional) Annualized, continuously compounded yield of the 
underlying asset over the life of the option, expressed as a 
decimal number. (Default = 0.) For example, for options 
written on stock indices, Yield could represent the dividend 
yield. For currency options, Yield could be the foreign 
risk-free interest rate. 
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See Also blsdelta, blsgamma, blsprice, blsrho, blstheta, blsvega

References Daigler, Advanced Options Trading, Chapter 4.
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5blspricePurpose Black-Scholes put and call option pricing

Syntax [Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Description [Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, 
Yield)  computes European put and call option prices using a Black-Scholes 
model.

Any input argument may be a scalar, vector, or matrix. When a value is a 
scalar, that value is used to price all the options. If more than one input is a 
vector or matrix, the dimensions of all non-scalar inputs must be identical.

Rate, Time, Volatility, and Yield must be expressed in consistent units of 
time. 

Examples Consider European stock options that expire in three months with an exercise 
price of $95. Assume that the underlying stock pays no dividend, trades at 
$100, and has a volatility of 50% per annum. The risk-free rate is 10% per 
annum. Using this data 

[Call, Put] = blsprice(100, 95, 0.1, 0.25, 0.5) 

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate of return 
over the life of the option, expressed as a positive decimal 
number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized standard 
deviation of the continuously compounded asset return), 
expressed as a positive decimal number.

Yield (Optional) Annualized, continuously compounded yield of the 
underlying asset over the life of the option, expressed as a 
decimal number. (Default = 0.) For example, for options 
written on stock indices, Yield could represent the dividend 
yield. For currency options, Yield could be the foreign 
risk-free interest rate. 
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returns call and put prices of $13.70 and $6.35, respectively.

See Also blkprice, blsdelta, blsgamma, blsimpv, blslambda, blsrho, blstheta, 
blsvega

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003.

Luenberger, David G., Investment Science, Oxford University Press, 1998.
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5blsrhoPurpose Black-Scholes sensitivity to interest rate change

Syntax [CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility, 
Yield)

Arguments

Description [CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility, 
Yield)  returns the call option rho CallRho, and the put option rho PutRho. Rho 
is the rate of change in value of derivative securities with respect to interest 
rates.

Examples [CallRho, PutRho] = blsrho(50, 50, 0.12, 0.25, 0.3, 0)

CallRho =
    6.6686

PutRho =
   -5.4619

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate of return 
over the life of the option, expressed as a positive decimal 
number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized standard 
deviation of the continuously compounded asset return), 
expressed as a positive decimal number.

Yield (Optional) Annualized, continuously compounded yield of the 
underlying asset over the life of the option, expressed as a 
decimal number. (Default = 0.) For example, for options 
written on stock indices, Yield could represent the dividend 
yield. For currency options, Yield could be the foreign 
risk-free interest rate. 
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See Also blsdelta, blsgamma, blslambda, blsprice, blstheta, blsvega

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003.
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5blsthetaPurpose Black-Scholes sensitivity to time-until-maturity change

Syntax [CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time, 
Volatility, Yield)

Arguments

Description [CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time, 
Volatility, Yield)  returns the call option theta CallTheta, and the put 
option theta PutTheta. Theta is the sensitivity in option value with respect to 
time.

Examples [CallTheta, PutTheta] = blstheta(50, 50, 0.12, 0.25, 0.3, 0)

CallTheta =
   -8.9630

PutTheta =
   -3.1404

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate of return 
over the life of the option, expressed as a positive decimal 
number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized standard 
deviation of the continuously compounded asset return), 
expressed as a positive decimal number.

Yield (Optional) Annualized, continuously compounded yield of the 
underlying asset over the life of the option, expressed as a 
decimal number. (Default = 0.) For example, for options 
written on stock indices, Yield could represent the dividend 
yield. For currency options, Yield could be the foreign 
risk-free interest rate. 
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See Also blsdelta, blsgamma, blslambda, blsprice, blsrho, blsvega

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003.
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5blsvegaPurpose Black-Scholes sensitivity to underlying price volatility

Syntax Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield)

Arguments

Description Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield)  
returns vega, the rate of change of the option value with respect to the volatility 
of the underlying asset.

Examples Vega = blsvega(50, 50, 0.12, 0.25, 0.3, 0)

Vega =
    9.6035

See Also blsdelta, blsgamma, blslambda, blsprice, blsrho, blstheta

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003.

Price Current price of the underlying asset.

Strike Exercise price of the option.

Rate Annualized, continuously compounded risk-free rate of return 
over the life of the option, expressed as a positive decimal 
number.

Time Time to expiration of the option, expressed in years.

Volatility Annualized asset price volatility (annualized standard 
deviation of the continuously compounded asset return), 
expressed as a positive decimal number.

Yield (Optional) Annualized, continuously compounded yield of the 
underlying asset over the life of the option, expressed as a 
decimal number. (Default = 0.) For example, for options 
written on stock indices, Yield could represent the dividend 
yield. For currency options, Yield could be the foreign 
risk-free interest rate. 
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5bndconvpPurpose Bond convexity given price (SIA compliant)

Syntax [YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, 
Maturity, Period, Basis, EndMonthRule, IssueDate, 
FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments Price Clean price (excludes accrued interest).

CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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All specified arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix 
([]) as a placeholder for an optional argument. Fill unspecified entries in input 
vectors with NaN. Dates can be serial date numbers or date strings.

Description [YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, 
Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate, StartDate, Face) computes the convexity of NUMBONDS 
fixed income securities given a clean price for each bond. This function 
determines the convexity for a bond whether or not the first or last coupon 
periods in the coupon structure are short or long (i.e., whether or not the 
coupon structure is synchronized to maturity). This function also determines 
the convexity of a zero coupon bond.

YearConvexity is the yearly (annualized) convexity; PerConvexity is the 
periodic convexity reported on a semiannual bond basis (in accordance with 
SIA convention). Both outputs are NUMBONDS-by-1 vectors.

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
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Examples Find the convexity of three bonds given their prices.

Price = [106; 100; 98]; 
CouponRate = 0.055; 
Settle = '02-Aug-1999'; 
Maturity = '15-Jun-2004'; 
Period = 2; 
Basis = 0; 

[YearConvexity, PerConvexity] = bndconvp(Price,... 
CouponRate,Settle, Maturity, Period, Basis)

YearConvexity =

   21.4447
   21.0363
   20.8951

PerConvexity =

   85.7788
   84.1454
   83.5803

See Also bndconvy, bnddurp, bnddury, cfconv, cfdur
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5bndconvyPurpose Bond convexity given yield (SIA compliant)

Syntax [YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, 
Maturity, Period, Basis, EndMonthRule, IssueDate, 
FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments Yield Yield to maturity on a semiannual basis.

CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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All specified arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix 
([]) as a placeholder for an optional argument. Fill unspecified entries in input 
vectors with NaN. Dates can be serial date numbers or date strings.

Description [YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, 
Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate, StartDate, Face) computes the convexity of NUMBONDS 
fixed income securities given the yield to maturity for each bond. This function 
determines the convexity for a bond whether or not the first or last coupon 
periods in the coupon structure are short or long (i.e., whether or not the 
coupon structure is synchronized to maturity). This function also determines 
the convexity of a zero coupon bond.

YearConvexity is the yearly (annualized) convexity; PerConvexity is the 
periodic convexity reported on a semiannual bond basis (in accordance with 
SIA convention). Both outputs are NUMBONDS-by-1 vectors.

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
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Examples Find the convexity of a bond at three different yield values.

Yield = [0.04; 0.055; 0.06];  
CouponRate = 0.055; 
Settle = '02-Aug-1999'; 
Maturity = '15-Jun-2004'; 
Period = 2; 
Basis = 0; 

[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,... 
Settle, Maturity, Period, Basis)

YearConvexity =

   21.4825
   21.0358
   20.8885

PerConvexity =

   85.9298
   84.1434
   83.5541

See Also bndconvp, bnddurp, bnddury, cfconv, cfdur
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5bnddurpPurpose Bond duration given price (SIA compliant)

Syntax [ModDuration, YearDuration, PerDuration] = bnddurp(Price, 
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments Price Clean price (excludes accrued interest).

CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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All specified arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix 
([]) as a placeholder for an optional argument. Fill unspecified entries in input 
vectors with NaN. Dates can be serial date numbers or date strings.

Description [ModDuration, YearDuration, PerDuration] = bnddurp(Price, 
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) 
computes the duration of NUMBONDS fixed income securities given a clean price 
for each bond. This function determines the Macaulay and modified duration 
for a bond whether or not the first or last coupon periods in the coupon 
structure are short or long (i.e., whether or not the coupon structure is 
synchronized to maturity). This function also determines the Macaulay and 
modified duration for a zero coupon bond.

ModDuration is the modified duration in years; YearDuration is the Macaulay 
duration in years; PerDuration is the periodic Macaulay duration reported on 
a semiannual bond basis (in accordance with SIA convention.) Outputs are 
NUMBONDS-by-1 vectors.

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
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Examples Find the duration of three bonds given their prices.

Price = [106; 100; 98]; 
CouponRate = 0.055; 
Settle = '02-Aug-1999'; 
Maturity = '15-Jun-2004'; 
Period = 2; 
Basis = 0; 

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,... 
CouponRate, Settle, Maturity, Period, Basis)

ModDuration =

    4.2400
    4.1925
    4.1759

YearDuration =

    4.3275
    4.3077
    4.3007

PerDuration =

    8.6549
    8.6154
    8.6014

See Also bndconvp, bndconvy, bnddury
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5bndduryPurpose Bond duration given yield (SIA compliant)

Syntax [ModDuration, YearDuration, PerDuration] = bnddury(Yield, 
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments Yield Yield to maturity on a semiannual basis.

CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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All specified arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix 
([]) as a placeholder for an optional argument. Fill unspecified entries in input 
vectors with NaN. Dates can be serial date numbers or date strings.

Description [ModDuration, YearDuration, PerDuration] = bnddury(Yield, 
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
computes the Macaulay and modified duration of NUMBONDS fixed income 
securities given yield to maturity for each bond. This function determines the 
duration for a bond whether or not the first or last coupon periods in the coupon 
structure are short or long (i.e., whether or not the coupon structure is 
synchronized to maturity). This function also determines the Macaulay and 
modified duration for a zero coupon bond.

ModDuration is the modified duration in years; YearDuration is the Macaulay 
duration in years; PerDuration is the periodic Macaulay duration reported on 
a semiannual bond basis (in accordance with SIA convention). Outputs are 
NUMBONDS-by-1 vectors.

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
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Examples Find the duration of a bond at three different yield values.

Yield = [0.04; 0.055; 0.06];  
CouponRate = 0.055; 
Settle = '02-Aug-1999'; 
Maturity = '15-Jun-2004'; 
Period = 2; 
Basis = 0; 

[ModDuration,YearDuration,PerDuration]=bnddury(Yield,... 
CouponRate, Settle, Maturity, Period, Basis)

ModDuration =

    4.2444
    4.1924
    4.1751

YearDuration =

    4.3292
    4.3077
    4.3004

PerDuration =

    8.6585
    8.6154
    8.6007

See Also bndconvp, bndconvy, bnddurp
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5bndpricePurpose Price a fixed income security from yield to maturity (SIA compliant)

Syntax [Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity)
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity, 

Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate, StartDate, Face)

Arguments Required and optional inputs can be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalar arguments. Optional inputs can 
also be passed as empty matrices ([]) or omitted at the end of the argument 
list. The value NaN in any optional input invokes the default value for that 
entry. Dates can be serial date numbers or date strings. 

Yield Bond yield to maturity on a semiannual basis.

CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.
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Description [Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity, 
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate, StartDate, Face) given bonds with SIA date parameters 
and semiannual yields to maturity, returns the clean prices and accrued 
interest due.

Price is the clean price of the bond (current price without accrued interest).

AccruedInt is the accrued interest payable at settlement.

Price and Yield are related by the formula

Price + Accrued_Interest = sum(Cash_Flow*(1+Yield/2)^(-Time))

where the sum is over the bonds’ cash flows and corresponding times in units 
of semiannual coupon periods.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
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Examples Price a treasury bond at three different yield values. 

Yield = [0.04; 0.05; 0.06]; 
CouponRate = 0.05; 
Settle = '20-Jan-1997'; 
Maturity = '15-Jun-2002'; 
Period = 2; 
Basis = 0; 

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,... 
Maturity, Period, Basis)

Price =

  104.8106
 99.9951
  95.4384

AccruedInt =

  0.4945
  0.4945
  0.4945

See Also cfamounts, bndyield
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5bndspreadPurpose Static spread over spot curve

Syntax Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity, 
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate)

Arguments SpotInfo Two-column matrix: 

[SpotDates ZeroRates] 

Zero rates correspond to maturities on the spot dates, 
continuously compounded. You will obtain the best 
results if you choose evenly spaced rates close together, 
for example, by using the three-month deposit rates.

Price Price for every $100 notional amount of bonds whose 
spreads are computed.

CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A scalar or 
vector of integers. Allowed values are 0, 1, 2 (default), 3, 
4, 6, and 12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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Description Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity, 
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate) computes the static spread to benchmark in basis points.

Examples Compute a FNMA 4 3/8 spread over a Treasury spot-curve.

% Build spot curve.

RefMaturity = [datenum('02/27/2003');    
               datenum('05/29/2003');
               datenum('10/31/2004');
               datenum('11/15/2007');
               datenum('11/15/2012');
               datenum('02/15/2031')];

RefCpn = [0;
          0;

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 
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          2.125;
          3;
          4;
          5.375] / 100;

RefPrices =  [99.6964;
              99.3572;
             100.3662;
              99.4511;
              99.4299;
             106.5756];
         
RefBonds = [RefPrices, RefMaturity, RefCpn];
Settle   = datenum('26-Nov-2002');
[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ... 
RefPrices, Settle)

% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday, Nov 26, 2002
Price    = 105.484;
Coupon   = 0.04375;
Maturity = datenum('15-Oct-2006');

% All optional inputs are supposed to be accounted by default,
% except the accrued interest under 30/360 (SIA), so:
Period = 2;
Basis  = 1;
SpotInfo = [CurveDates, ZeroRates];

% Compute static spread over treasury curve, taking into account
% the shape of curve as derived by bootstrapping method embedded 
% within bndspread.

SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...  
Maturity, Period, Basis)

plot(CurveDates, ZeroRates*100, 'b', CurveDates, ... 
ZeroRates*100+SpreadInBP/100, 'r--')
legend({'Treasury'; 'FNMA 4 3/8'})
xlabel('Curve Dates')
ylabel('Spot Rate [%]')
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grid;

ZeroRates =

    0.0121
    0.0127
    0.0194
    0.0317
    0.0423
    0.0550 

CurveDates =

      731639
      731730
      732251
      733361
      735188
      741854

SpreadInBP =

   18.7582
5-69



bndspread
See Also bndprice, bndyield
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5bndyieldPurpose Yield to maturity for a fixed income security (SIA compliant)

Syntax Yield = bndyield(Price, CouponRate, Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face)

Arguments Required and optional inputs can be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalar arguments. Optional inputs can 
also be passed as empty matrices ([]) or omitted at the end of the argument 
list. The value NaN in any optional input invokes the default value for that 
entry. Dates can be serial date numbers or date strings. 

Price Clean price of the bond (current price without accrued 
interest).

CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.
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Description Yield = bndyield(Price, CouponRate, Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face) given NUMBONDS bonds with SIA date parameters and clean 
prices (excludes accrued interest), returns the bond equivalent yields to 
maturity. 

Yield is a NUMBONDS-by-1 vector of the bond equivalent yields to maturity with 
semiannual compounding.

Price and Yield are related by the formula

Price + Accrued_Interest = sum(Cash_Flow*(1+Yield/2)^(-Time))

where the sum is over the bonds’ cash flows and corresponding times in units 
of semiannual coupon periods.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
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Examples Compute the yield of a treasury bond at three different price values. 

Price = [95; 100; 105]; 
CouponRate = 0.05; 
Settle = '20-Jan-1997'; 
Maturity = '15-Jun-2002'; 
Period = 2; 
Basis = 0; 

Yield = bndyield(Price, CouponRate, Settle,... 
Maturity, Period, Basis)

Yield =

    0.0610
    0.0500
    0.0396

See Also bndprice, cfamounts
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5bollingPurpose Bollinger band chart

Syntax bolling(Asset, Samples, Alpha)
[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha, 

Width)

Arguments

Description bolling(Asset, Samples, Alpha, Width)  plots Bollinger bands for given 
Asset data. This form of the function does not return any data.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha, 
Width)  returns Movavgv with the moving average of the Asset data, UpperBand 
with the upper band data, and LowerBand with the lower band data. This form 
of the function does not plot any data.

Note  The standard deviations are normalized by N-1, where N = the 
sequence length.

Examples If Asset is a column vector of closing stock prices

bolling(Asset, 20, 1)

plots linear 20-day moving average Bollinger bands based on the stock prices.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, 20, 1)

returns Movavgv, UpperBand, and LowerBand as vectors containing the moving 
average, upper band, and lower band data, without plotting the data.

Asset Vector of asset data.

Samples Number of samples to use in computing the moving average. 

Alpha (Optional) Exponent used to compute the element weights of the 
moving average. Default = 0 (simple moving average).

Width (Optional) Number of standard deviations to include in the 
envelope. A multiplicative factor specifying how tight the bands 
should be around the simple moving average. Default = 2. 
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See Also candle, dateaxis, highlow, movavg, pointfig
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5busdatePurpose Next or previous business day

Syntax Busday = busdate(Date, Direction, Holiday, Weekend)

Arguments

Description Busday = busdate(Date, Direction, Holiday, Weekend) returns the serial 
date number of the next or previous business day from the reference date.

Use the function datestr to convert serial date numbers to formatted date 
strings.

Examples Example 1:

Busday = busdate('3-Jul-2001', 1)
Busday =

     731037

datestr(Busday)

ans =

05-Jul-2001

Example 2: You can indicate that Saturday is a business day by appropriately 
setting the Weekend argument.

Weekend = [1 0 0 0 0 0 0];

Date Reference date. Enter as serial date number or date string.

Direction (Optional) Direction. 1 = next (default) or -1 = previous business 
day.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates 
in Holiday must be the same format: either serial date numbers or 
date strings. (Using serial date numbers improves performance.) 
The holidays function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the value 1 
indicating weekend days. The first element of this vector 
corresponds to Sunday. Thus, when Saturday and Sunday form the 
weekend (default), Weekend = [1 0 0 0 0 0 1]. 
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July 4, 2003, falls on a Friday. Use busdate to verify that Saturday, July 5, is 
actually a business day.

Date = datestr(busdate('3-Jul-2001', 1, , Weekend))

See Also holidays, isbusday
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5candlePurpose Candlestick chart

Syntax candle(High, Low, Close, Open, Color)

Arguments

Description candle(High, Low, Close, Open, Color)  plots a candlestick chart given 
column vectors with the high, low, closing, and opening prices of a security.

If the closing price is greater than the opening price, the body (the region 
between the opening and closing price) is unfilled.

If the opening price is greater than the closing price, the body is filled.

Examples Given High, Low, Close, and Open as equal-size vectors of stock price data

candle(High, Low, Close, Open, 'cyan')

plots a candlestick chart with cyan candles.

See Also bolling, dateaxis, highlow, movavg, pointfig

High High prices for a security. A column vector.

Low Low prices for a security. An column vector.

Close Closing prices for a security. A column vector.

Open Opening prices for a security. A column vector.

Color (Optional) Candlestick color. A string. MATLAB supplies a default 
color if none is specified. The default color differs depending on the 
background color of the figure window. See ColorSpec in the 
MATLAB documentation for color names.
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5cfamountsPurpose Cash flow and time mapping for bond portfolio (SIA compliant)

Syntax [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = 
cfamounts(CouponRate, Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face)

Arguments CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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Required arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices.

Description [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = 
cfamounts(CouponRate, Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face) returns matrices of cash flow amounts, cash flow dates, 
time factors, and cash flow flags for a portfolio of NUMBONDS fixed income        
securities. The elements contained in the cash flow matrix, time factor       
matrix, and cash flow flag matrix correspond to the cash flow dates for each 
security. The first element of each row in the cash flow matrix is the accrued 
interest payable on each bond. This is zero in the case of all zero coupon bonds. 
This function determines all cash flows and time mappings for a bond whether 
or not the coupon structure contains odd first or last periods. All output 
matrices are padded with NaNs as necessary to ensure that all rows have the 
same number of elements.

CFlowAmounts is the cash flow matrix of a portfolio of bonds. Each row 
represents the cash flow vector of a single bond. Each element in a column 
represents a specific cash flow for that bond.

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
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CFlowDates is the cash flow date matrix of a portfolio of bonds. Each row 
represents a single bond in the portfolio. Each element in a column represents 
a cash flow date of that bond.

TFactors is the matrix of time factors for a portfolio of bonds. Each row 
corresponds to the vector of time factors for each bond. Each element in a 
column corresponds to the specific time factor associated with each cash flow of 
a bond. Time factors are useful in determining the present value of a stream of 
cash flows. The term “time factor” refers to the exponent TF in the discounting 
equation

where:

CFlowFlags is the matrix of cash flow flags for a portfolio of bonds. Each row 
corresponds to the vector of cash flow flags for each bond. Each element in a 
column corresponds to the specific flag associated with each cash flow of a bond. 
Flags identify the type of each cash flow (e.g., nominal coupon cash flow, front 
or end partial or “stub” coupon, maturity cash flow). Possible values are shown 
in the table.

PV = present value of a cash flow

CF = the cash flow amount

 z = the risk-adjusted annualized rate or yield corresponding to given 
cash flow. The yield is quoted on a semiannual basis.

TF = time factor for a given cash flow. Time is measured in semiannual 
periods from the settlement date to the cash flow date. In computing 
time factors, we use SIA actual/actual day count conventions for all 
time factor calculations.

Flag Cash Flow Type

0 Accrued interest due on a bond at settlement.

1 Initial cash flow amount smaller than normal due to “stub” coupon 
period. A stub period is created when the time from issue date to 
first coupon is shorter than normal.

PV CF 1 z 2⁄+( )TF⁄=
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Examples Consider a portfolio containing a corporate bond paying interest quarterly and 
a treasury bond paying interest semiannually. Compute the cash flow 
structure and the time factors for each bond.

Settle = '01-Nov-1993';
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4; 2];
Basis = [1; 0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ... 
cfamounts(CouponRate,Settle, Maturity, Period, Basis)

CFlowAmounts =

  -0.7667    1.5000    1.5000    1.5000    1.5000  101.5000

2 Larger than normal initial cash flow amount because first coupon 
period is longer than normal.

3 Nominal coupon cash flow amount.

4 Normal maturity cash flow amount (face value plus the nominal 
coupon amount).

5 End “stub” coupon amount (last coupon period abnormally short 
and actual maturity cash flow is smaller than normal). 

6 Larger than normal maturity cash flow because last coupon period 
longer than normal. 

7 Maturity cash flow on a coupon bond when the bond has less than 
one coupon period to maturity.

8 Smaller than normal maturity cash flow when bond has less than 
one coupon period to maturity.

9 Larger than normal maturity cash flow when bond has less than 
one coupon period to maturity. 

10 Maturity cash flow on a zero coupon bond.

Flag Cash Flow Type
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  -1.8989    2.5000    2.5000    2.5000  102.5000       NaN

CFlowDates =

728234     728278     728368     728460     728552     728643
728234     728278     728460     728643     728825        NaN

TFactors =

0    0.2404    0.7403    1.2404    1.7403    2.2404
0    0.2404    1.2404    2.2404    3.2404       NaN

CFlowFlags =

0     3     3     3     3     4
0     3     3     3     4   NaN

See Also accrfrac, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, 
cpndaysn, cpndaysp, cpnpersz
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5cfconvPurpose Cash flow convexity

Syntax CFlowConvexity = cfconv(CashFlow, Yield)

Arguments

Description CFlowConvexity = cfconv(CashFlow, Yield)  returns the convexity of a cash 
flow in periods.

Examples Given a cash flow of nine payments of $2.50 and a final payment $102.50, with 
a periodic yield of 2.5%

CashFlow = [2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

Convex = cfconv(CashFlow, 0.025)

Convex =

    90.4493 (periods)

See Also bndconvp. bndconvy, bnddurp, bnddury, cfdur

CashFlow A vector of real numbers.

Yield Periodic yield. A scalar. Enter as a decimal fraction.
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5cfdatesPurpose Cash flow dates for a fixed-income security (SIA compliant)

Syntax CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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Required arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices.

Any input can contain multiple values, but if so, all other inputs must contain 
the same number of values or a single value that applies to all. For example, if 
Maturity contains N dates, then Settle must contain N dates or a single date. 

Description CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns a 
matrix of cash flow dates for a bond or set of bonds. cfdates determines all cash 
flow dates for a bond whether or not the coupon payment structure is normal 
or the first and/or last coupon period is long or short.

CFlowDates is an N-row matrix of serial date numbers, padded with NaNs as 
necessary to ensure that all rows have the same number of elements. Use the 
function datestr to convert serial date numbers to formatted date strings.

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.
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Note  The cash flow flags for a portfolio of bonds were formerly available as 
the cfdates second output argument, CFlowFlags. You can now use   
cfamounts to get these flags. If you specify a CFlowFlags argument, cfdates 
displays a message directing you to use cfamounts.

 Examples CFlowDates = cfdates('14 Mar 1997', '30 Nov 1998', 2, 0, 1)
CFlowDates =
      729541      729724      729906      730089
datestr(CFlowDates)
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998

Given three securities with different maturity dates and the same default 
arguments

Maturity = ['30-Sep-1997'; '31-Oct-1998'; '30-Nov-1998'];
CFlowDates = cfdates('14-Mar-1997', Maturity)
CFlowDates =
      729480      729663         NaN         NaN
      729510      729694      729875      730059
      729541      729724      729906      730089

Look at the cash-flow dates for the last security.

datestr(CFlowDates(3,:))
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998

See Also accrfrac, cfamounts, cftimes, cpncount, cpndaten, cpndatenq, cpndatep, 
cpndatepq, cpndaysn, cpndaysp, cpnpersz
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5cfdurPurpose Cash-flow duration and modified duration

Syntax [Duration, ModDuration] = cfdur(CashFlow, Yield)

Arguments

Description [Duration, ModDuration] = cfdur(CashFlow, Yield)  calculates the 
duration and modified duration of a cash flow in periods.

Examples Given a cash flow of nine payments of $2.50 and a final payment $102.50, with 
a periodic yield of 2.5%

CashFlow=[2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

[Duration, ModDuration] = cfdur(CashFlow, 0.025)

Duration =
           8.9709 (periods)

ModDuration =
             8.7521 (periods)

See Also bndconvp, bndconvy, bnddurp, bnddury, cfconv

CashFlow A vector of real numbers.

Yield Periodic yield. A scalar. Enter as a decimal fraction.
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5cfportPurpose Portfolio form of cash flow amounts

Syntax [CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts, 
CFlowDates, TFactors)

Arguments

Description [CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts, 
CFlowDates, TFactors)  computes a vector of all cash flow dates of a bond 
portfolio, and a matrix mapping the cash flows of each bond to those dates. Use 
the matrix for pricing the bonds against a curve of discount factors.

CFBondDate is a NUMBONDS by number of dates (NUMDATES) matrix of cash flows 
indexed by bond and by date in AllDates. Each row contains a bond's cash flow 
values at the indices corresponding to entries in AllDates. Other indices in the 
row contain zeros.

AllDates is a NUMDATES-by-1 list of all dates that have any cash flow from the 
bond portfolio.

AllTF is a NUMDATES-by-1 list of time factors corresponding to the dates in 
AllDates. If TFactors is not entered, AllTF contains the number of days from 
the first date in AllDates.

IndByBond is a NUMBONDS-by-NUMCFS matrix of indices. The ith row contains a 
list of indices into AllDates where the ith bond has cash flows. Since some 
bonds have more cash flows than others, the matrix is padded with NaNs.

 Examples Use cfamounts to calculate the cash flow amounts, cash flow dates, and time 
factors for each of two bonds. Then use cfplot to plot the cash flow diagram.

CFlowAmounts Number of bonds (NUMBONDS) by number of cash flows 
(NUMCFS) matrix with entries listing cash flow amounts 
corresponding to each date in CFlowDates. 

CFlowDates NUMBONDS-by-NUMCFS matrix with rows listing cash flow 
dates for each bond and padded with NaNs. 

TFactors (Optional) NUMBONDS-by-NUMCFS matrix with entries 
listing the time between settlement and the cash flow 
date measured in semiannual coupon periods. 
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Settle = '03-Aug-1999';
Maturity = ['15-Aug-2000';'15-Dec-2000'];
CouponRate= [0.06; 0.05];
Period = [3;2];
Basis = [1;0];
[CFlowAmounts, CFlowDates, TFactors] = cfamounts(CouponRate,... 
Settle, Maturity, Period, Basis);
cfplot(CFlowDates,CFlowAmounts)
xlabel('Numeric Cash Flow Dates')
ylabel('Bonds')
title('Cash Flow Diagram')

Finally, call cfport to map the cash flow amounts to the cash flow dates. 

Each row in the resultant CFBondDate matrix represents a bond. Each column 
represents a date on which one or more of the bonds has a cash flow. A 0 means 
the bond did not have a cash flow on that date. The dates associated with the 
columns are listed in AllDates. For example, the first bond had a cash flow of 
2.000 on 730347. The second bond had no cash flow on this date.
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For each bond, IndByBond indicates the columns of CFBondDate, or dates in 
AllDates, for which a bond has a cash flow.

[CFBondDate, AllDates, AllTF, IndByBond] = ...
cfport(CFlowAmounts, CFlowDates, TFactors)

CFBondDate =

  -1.8000  2.0000  2.0000  2.0000       0  102.0000         0
  -0.6694       0  2.5000       0  2.5000         0  102.5000

AllDates =

      730335
      730347
      730469
      730591
      730652
      730713
      730835

AllTF =

         0
    0.0663
    0.7322
    1.3989
    1.7322
    2.0663
    2.7322

IndByBond =

     1     2     3     4     6
     1     3     5     7   NaN

See Also cfamounts
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5cftimesPurpose Time factors corresponding to bond cash flow dates (SIA compliant)

Syntax TFactors = cftimes(Settle, Maturity, Period, Basis, EndMonthRule,           
IssueDate, FirstCouponDate, LastCouponDate, StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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Description TFactors = cftimes(Settle, Maturity, Period, Basis, EndMonthRule, 
IssueDate, FirstCouponDate, LastCouponDate, StartDate)  determines 
the time factors corresponding to the cash flows of a bond or set of bonds. The 
time factor of a cash flow is the difference between the settlement date and the 
cash flow date in units of semiannual coupon periods. In computing time 
factors, we use SIA actual/actual day count conventions for all time factor 
calculations.

Examples Settle = '15-Mar-1997';
Maturity = '01-Sep-1999';
Period = 2;
TFactors = cftimes(Settle, Maturity, Period)

TFactors =

    0.9239    1.9239    2.9239    3.9239    4.9239

See Also accrfrac, cfdates, cfamounts, cpncount, cpndaten, cpndatenq, cpndatep, 
cpndatepq, cpndaysn, cpndaysp, cpnpersz, date2time 

                

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.
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5corr2covPurpose Convert standard deviation and correlation to covariance

Syntax ExpCovariance = corr2cov(ExpSigma, ExpCorrC)

Arguments

Description corr2cov converts standard deviation and correlation to covariance.

ExpCovariance is an n-by-n covariance matrix, where n is the number of     
processes.

ExpCov(i,j) = ExpCorrC(i,j)*(ExpSigma(i)*ExpSigma(j) 

Examples ExpSigma = [0.5  2.0];

ExpCorrC = [1.0 -0.5
           -0.5  1.0];

ExpCovariance = corr2cov(ExpSigma, ExpCorrC)

 Expected results:

ExpCovariance =

    0.2500   -0.5000
   -0.5000    4.0000

See Also corrcoef, cov, cov2corr, ewstats, std

ExpSigma Vector of length n with the standard deviations of each 
process. n is the number of random processes.

ExpCorrC (Optional) n-by-n correlation coefficient matrix. If ExpCorrC is 
not specified, the processes are assumed to be uncorrelated, 
and the identity matrix is used.
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5cov2corrPurpose Convert covariance to standard deviation and correlation coefficient 

Syntax [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)

Arguments

Description [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance) converts covariance to 
standard deviations and correlation coefficients.

ExpSigma is a 1-by-n vector with the standard deviation of each process.

ExpCorrC is an n-by-n matrix of correlation coefficients.

ExpSigma(i) = sqrt(ExpCovariance(i,i))
ExpCorrC(i,j) = ExpCovariance(i,j)/(ExpSigma(i)*ExpSigma(j))

Examples ExpCovariance = [0.25 -0.5
                -0.5   4.0];

[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)

Expected results:

  ExpSigma =

    0.5000    2.0000

ExpCorrC =

    1.0000   -0.5000
   -0.5000    1.0000

See Also corr2cov, corrcoef, cov, ewstats, std 

       

ExpCovariance n-by-n covariance matrix, e.g., from cov or ewstats. n is 
the number of random processes.
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5cpncountPurpose Coupon payments remaining until maturity (SIA compliant)

Syntax NumCouponsRemaining = cpncount(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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Required arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices.

Description NumCouponsRemaining = cpncount(Settle, Maturity, Period, Basis, 
EndMonthRule) returns the whole number of coupon payments between the 
settlement and maturity dates for a coupon bond or set of bonds.

Examples NumCouponsRemaining = cpncount('14 Mar 1997', '30 Nov 2000',... 
2, 0, 0)

n =
     8

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date. 

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.
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Given three coupon bonds with different maturity dates and the same default 
arguments

Maturity = ['30 Sep 2000'; '31 Oct 2001'; '30 Nov 2002'];

NumCouponsRemaining = cpncount('14 Sep 1997', Maturity)

NumCouponsRemaining =

     7
     9
    11

See Also accrfrac, cfamounts, cfdates, cftimes, cpndaten, cpndatenq, cpndatep, 
cpndatepq, cpndaysn, cpndaysp, cpnpersz
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5cpndatenPurpose Next coupon date for fixed-income security (SIA compliant)

Syntax NextCouponDate = cpndaten(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 
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Required arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices.

Description NextCouponDate = cpndaten(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)  returns 
the next coupon date after the settlement date. This function finds the next 
coupon date whether or not the coupon structure is synchronized with the 
maturity date.

NextCouponDate is returned as a serial date number. The function datestr 
converts a serial date number to a formatted date string.

Examples NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 0);

datestr(NextCouponDate)

ans =

30-May-1997

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.
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NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 1);

datestr(NextCouponDate)

ans =

31-May-1997

Maturity = ['30 Sep 2000'; '31 Oct 2000'; '30 Nov 2000'];

NextCouponDate = cpndaten('14 Mar 1997', Maturity);

datestr(NextCouponDate)

ans =

31-Mar-1997
30-Apr-1997
31-May-1997

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndatenq, cpndatep, 
cpndatepq, cpndaysn, cpndaysp, cpnpersz 
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5cpndatenqPurpose Next quasi coupon date for fixed income security (SIA compliant) 

Syntax NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 
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Required arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices. Fill unspecified entries in input vectors with the value NaN. Dates can 
be serial date numbers or date strings. 

Description NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
determines the next quasi coupon date for a portfolio of NUMBONDS fixed income 
securities whether or not the first or last coupon is normal, short, or long. For 
zero coupon bonds cpndatenq returns quasi coupon dates as if the bond had a 
semiannual coupon structure. Successive quasi coupon dates determine the 
length of the standard coupon period for the fixed income security of interest 
and do not necessarily coincide with actual coupon payment dates.

Outputs are NUMBONDS-by-1 vectors. 

If Settle is a coupon date, this function never returns the settlement date. It 
returns the quasi coupon date strictly after settlement.

NextQuasiCouponDate is returned as a serial date number. The function 
datestr converts a serial date number to a formatted date string.

Examples Given a pair of bonds with the characteristics

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.
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Compute NextCouponDate for this pair of bonds.

NextCouponDate = cpndaten(Settle, Maturity);

datestr(NextCouponDate)

ans =

31-May-1997
10-Jun-1998

Compute the next quasi coupon dates for these two bonds.

NextQuasiCouponDate = cpndatenq(Settle, Maturity);

datestr(NextQuasiCouponDate)

ans =

31-May-1997
10-Jun-1998

Because no FirstCouponDate has been specified, the results are identical. 

Now supply an explicit FirstCouponDate for each bond.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');

Compute the next coupon dates.

NextCouponDate = cpndaten(Settle, Maturity, 2, 0, 1, [],... 
FirstCouponDate);

datestr(NextCouponDate)

ans =

30-Nov-1997
10-Dec-1998

The next coupon dates are identical to the specified first coupon dates.

Now recompute the next quasi coupon dates.
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NextQuasiCouponDate = cpndatenq(Settle, Maturity, 2, 0, 1, [],... 
FirstCouponDate);

datestr(NextQuasiCouponDate)

ans =

31-May-1997
10-Jun-1998

These results illustrate the distinction between actual coupon payment dates 
and quasi coupon dates. FirstCouponDate (and LastCouponDate, as well), 
when specified, is associated with an actual coupon payment and also serves as 
the synchronization date for determining all quasi coupon dates. Since each 
bond in this example pays semiannual coupons, and the first coupon date 
occurs more than six months after settlement, each will have an intermediate 
quasi coupon date before the actual first coupon payment occurs.

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatep, 
cpndatepq, cpndaysn, cpndaysp, cpnpersz 
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5cpndatepPurpose Previous coupon date for fixed-income security (SIA compliant)

Syntax PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 
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Required arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices.

Description PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)  returns 
the previous coupon date on or before settlement for a portfolio of bonds. This 
function finds the previous coupon date whether or not the coupon structure is 
synchronized with the maturity date. 

For zero coupon bonds the previous coupon date is the issue date, if available. 
However, if the issue date is not supplied, the previous coupon date for zero 
coupon bonds is the previous quasi coupon date calculated as if the frequency 
is semiannual.

PreviousCouponDate is returned as a serial date number. The function 
datestr converts a serial date number to a formatted date string.

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.
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Examples PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',... 
2, 0, 0);

datestr(PreviousCouponDate)

ans =

30-Dec-1996

PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',...
2, 0, 1);

datestr(PreviousCouponDate)

ans =

31-Dec-1996

Maturity = ['30 Apr 2000'; '31 May 2000'; '30 Jun 2000'];
PreviousCouponDate = cpndatep('14 Mar 1997', Maturity);

datestr(PreviousCouponDate)

ans =

31-Oct-1996
30-Nov-1996
31-Dec-1996

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, 
cpndatepq, cpndaysn, cpndaysp, cpnpersz
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5cpndatepqPurpose Previous quasi coupon date for fixed income security (SIA compliant)

Syntax PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 
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Required arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices. Fill unspecified entries in input vectors with the value NaN. Dates can 
be serial date numbers or date strings. 

Description PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
determines the previous quasi coupon date on or before settlement for a set of 
NUMBONDS fixed income securities. This function finds the previous quasi coupon 
date for a bond with a coupon structure in which the first or last period is either 
normal, short, or long (whether or not the coupon structure is synchronized to 
maturity). For zero coupon bonds this function returns quasi coupon dates as 
if the bond had a semiannual coupon structure.   

The term “previous quasi coupon date” refers to the previous coupon date for a 
bond calculated as if no issue date were specified. Although the issue date is 
not actually a coupon date, when issue date is specified, the previous actual 
coupon date for a bond is normally calculated as being either the previous 
coupon date or the issue date, whichever is greater. This function always 
returns the previous quasi coupon date regardless of issue date. If the 
settlement date is a coupon date, this function returns the settlement date.

PreviousQuasiCouponDate is returned as a serial date number. The function 
datestr converts a serial date number to a formatted date string.

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.
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Examples Given a pair of bonds with the characteristics

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

With no FirstCouponDate explicitly supplied, compute the 
PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity);

datestr(PreviousCouponDate)

ans =

30-Nov-1996
10-Dec-1997

Note that since the settlement date for the second bond is also a coupon date, 
cpndatep returns this date as the previous coupon date. 

Now establish a FirstCouponDate and IssueDate for this pair of bonds.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');
IssueDate = char('30-May-1996', '10-Dec-1996');

Recompute the PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity, 2, 0, 1, ... 
IssueDate, FirstCouponDate);

datestr(PreviousCouponDate)

ans =

30-May-1996
10-Dec-1996

Since both of these bonds settled before the first coupon had been paid, 
cpndatep returns the IssueDate as the PreviousCouponDate.
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Using the same data, compute PreviousQuasiCouponDate.

PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, 2, 0, 1,... 
IssueDate, FirstCouponDate);

datestr(PreviousQuasiCouponDate)

ans =

30-Nov-1996
10-Dec-1997

For the first bond the settlement date is not a normal coupon date. The 
PreviousQuasiCouponDate is the coupon date prior to or on the settlement 
date. Since the coupon structure is synchronized to FirstCouponDate, the 
previous quasi coupon date is 30-Nov-1996. PreviousQuasiCouponDate 
disregards IssueDate and FirstCouponDate in this case. For the second bond 
the settlement date (10-Dec-1997) occurs on a date when a coupon would 
normally be paid in the absence of an explicit FirstCouponDate. cpndatepq 
returns this date as PreviousQuasiCouponDate. 

   See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, 
cpndatep, cpndaysn, cpndaysp, cpnpersz 
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5cpndaysnPurpose Number of days to next coupon date (SIA compliant)

Syntax NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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Required arguments must be number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices. 

Description NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate)  returns the number of days from the settlement date to the next 
coupon date for a bond or set of bonds. For zero coupon bonds coupon dates are 
computed as if the bonds have a semiannual coupon structure.

Examples NumDaysNext = cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 0)

NumDaysNext =

   107

NumDaysNext = cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 1)

NumDaysNext =

   108

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.
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Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysNext = cpndaysn('14 Sep 2000', Maturity)

NumDaysNext =

    47
    77
   108

See Also accrfrac, cfamounts, cftimes, cfdates, cpncount, cpndaten, cpndatenq, 
cpndatep, cpndatepq, cpndaysp, cpnpersz
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5cpndayspPurpose Number of days since previous coupon date (SIA compliant)

Syntax NumDaysPrevious = cpndaysp(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
5-116



cpndaysp
Required arguments must be a number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices.

Description NumDaysPrevious = cpndaysp(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate)  returns the number of days between the previous coupon date and 
the settlement date for a bond or set of bonds. When the coupon frequency is 0 
(a zero coupon bond), the previous coupon date is calculated as if the frequency 
were semiannual.

Examples NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 0)

NumDaysPrevious =

    75

NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 1)

NumDaysPrevious =

    74

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.
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Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysPrevious = cpndaysp('14 Mar 2000', Maturity)

NumDaysPrevious =

   135
   105
    74

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, 
cpndatep, cpndatepq, cpndaysn, cpnpersz
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5cpnperszPurpose Number of days in coupon period (SIA compliant)

Syntax NumDaysPeriod = cpnpersz(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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Required arguments must be a number of bonds (NUMBONDS) by 1 or 
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be 
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty 
matrices.

Description NumDaysPeriod = cpnpersz(Settle, Maturity, Period, Basis, 
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate)  returns the number of days in the coupon period containing the 
settlement date. For zero coupon bonds coupon dates are computed as if the 
bonds have a semiannual coupon structure.

Examples NumDaysPeriod = cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 0)

NumDaysPeriod =

   183

NumDaysPeriod = cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 1)

NumDaysPeriod =

   184

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and will be followed only by 
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond 
actually starts (the date from which a bond’s cash flows 
can be considered). To make an instrument 
forward-starting, specify this date as a future date. If 
StartDate is not explicitly specified, the effective start 
date is the settlement date.
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Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysPeriod = cpnpersz('14 Sep 2000', Maturity)

NumDaysPeriod =

   184
   183
   184

See Also accrfrac, cfamounts, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, 
cpndatepq, cpndaysn, cpndaysp
5-121



cur2frac
5cur2fracPurpose Decimal currency values to fractional values

Syntax Fraction = cur2frac(Decimal, Denominator)

Description Fraction = cur2frac(Decimal, Denominator)  converts decimal currency 
values to fractional values. Fraction is returned as a string.

Examples Fraction = cur2frac(12.125, 8)

returns Fraction = 12.1, a string.

See Also cur2str, frac2cur
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5cur2strPurpose Bank formatted text

Syntax String = cur2str(Value, Digits)

Description String = cur2str(Value, Digits)  returns the given value in bank format. 
By default, Digits = 2. A negative Digits rounds the value to the left of the 
decimal point. String is returned as a string with a leading dollar sign ($). 
Negative numbers are displayed in parentheses.

Examples String = cur2str(−8264, 2)

returns String = ($8264.00)

See Also cur2frac, frac2cur
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5date2timePurpose Time and frequency from dates

Syntax [TFactors, F] = date2time(Settle, Dates, Compounding, Basis, 
EndMonthRule)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. 

Dates A vector of dates corresponding to the compounding 
value. 

Compounding (Optional) Scalar value representing the rate at which 
the input zero rates were compounded when annualized. 
This argument determines the formula for the discount 
factors: 

Compounding = 1, 2, 3, 4, 6, 12 (Default = 2.)

Disc = (1 + Z/F)^(-T), where F is the compounding 
frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 

Disc = (1 + Z/F)^(-T), where F is the number of days 
in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.
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Description [TFactors, F] = date2time(Settle, Dates, Compounding, Basis, 
EndMonthRule) computes time factors appropriate to compounded rate quotes 
beyond the settlement date.

TFactors is a vector of time factors.

F is a scalar of related compounding frequencies.

date2time is the inverse of time2date.

See Also cftimes, disc2rate, rate2disc, time2date

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.
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5dateaxisPurpose Convert serial-date axis labels to calendar-date axis labels

Syntax dateaxis(Aksis, DateForm, StartDate)

Arguments

Description dateaxis(Aksis, DateForm, StartDate)  replaces axis tick labels with date 
labels on a graphic figure.

See the MATLAB set command for information on modifying the axis tick 
values and other axis parameters.

Aksis (Optional) Determines which axis tick labels—x, y, or z—to 
replace. Enter as a string. Default = 'x'.

DateForm (Optional) Specifies which date format to use. Enter as an 
integer from 0 to 17. If no DateForm argument is entered, 
this function determines the date format based on the span 
of the axis limits. For example, if the difference between the 
axis minimum and maximum is less than 15, the tick labels 
are converted to three-letter day-of-the-week abbreviations 
(DateForm = 8). See DateForm format descriptions below.

StartDate (Optional) Assigns the date to the first axis tick value. Enter 
as a string. The tick values are treated as serial date 
numbers. The default StartDate is the lower axis limit 
converted to the appropriate date number. For example, a 
tick value of 1 is converted to the date 01-Jan-0000. 
Entering StartDate as '06-apr-1999' assigns the date 
April 6, 1999 to the first tick value and the axis tick labels 
are set accordingly.

DateForm Format Description

0 01-Mar-1999 15:45:17 day-month-year hour:minute:second

1 01-mar-1999 day-month-year

2 03/01/99 month/day/year

3 Mar month, three letters
5-126



dateaxis
Examples dateaxis('x') or dateaxis

converts the x-axis labels to an automatically determined date format.

dateaxis('y', 6)

converts the y-axis labels to the month/day format.

dateaxis('x', 2, '03/03/1999')

converts the x-axis labels to the month/day/year format. The minimum x-tick 
value is treated as March 3, 1999.

See Also bolling, candle, datenum, datestr, highlow, movavg, pointfig

4 M month, single letter

5 3 month

6 03/01 month/day

7 1 day of month

8 Wed day of week, three letters

9 W day of week, single letter

10 1999 year, four digits

11 99 year, two digits

12 Mar99 month year

13 15:45:17 hour:minute:second

14 03:45:17 PM hour:minute:second AM or PM

15 15:45 hour:minute

16 03:45 PM hour:minute AM or PM

17 95/03/01 year month day

DateForm Format Description
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5datedispPurpose Display date entries

Syntax datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

Arguments

Description datedisp(NumMat, DateForm) displays a matrix with the serial dates 
formatted as date strings, using a matrix with mixed numeric entries and 
serial date number entries. Integers between datenum('01-Jan-1900') and 
datenum('01-Jan-2200') are assumed to be serial date numbers, while all 
other values are treated as numeric entries.

CharMat is a character array representing NumMat. If no output variable is 
assigned, the function prints the array to the display.

Examples NumMat = [730730, 0.03, 1200 730100;
          730731, 0.05, 1000 NaN]

NumMat =

   1.0e+05 *

    7.3073    0.0000    0.0120    7.3010
    7.3073    0.0000    0.0100       NaN

datedisp(NumMat)

01-Sep-2000   0.03   1200   11-Dec-1998   
02-Sep-2000   0.05   1000      NaN        

See Also datestr

NumMat Numeric matrix to display

DateForm (Optional) Date format. See datestr for available and default 
format flags.
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5datefindPurpose Indices of date numbers in matrix

Syntax Indices = datefind(Subset, Superset, Tolerance)

Arguments

Description Indices = datefind(Subset, Superset, Tolerance) returns a vector of 
indices to the date numbers in Superset that are present in Subset, plus or 
minus the Tolerance. If no date numbers match, Indices = [].

Although this function was designed for use with sequential date numbers, you 
can use it with any nonrepeating integers.

Examples Superset = datenum(1999, 7, 1:31);

Subset = [datenum(1999, 7, 10); datenum(1999, 7, 20)];

Indices = datefind(Subset, Superset, 1)

Indices =

          9
         10
         11
         19
         20
         21

See Also datenum

Subset Subset matrix of date numbers used to find matching date 
numbers in Superset. These date numbers must be a 
nonrepeating subset of those in Superset.

Superset Superset matrix of nonrepeating date numbers whose elements 
are sought.

Tolerance (Optional) Tolerance (+/-) for matching the date numbers in 
Superset. A positive integer. Default = 0.
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5datemnthPurpose Date of day in future or past month

Syntax TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis, 
EndMonthRule)

Arguments

Any input can contain multiple values, but if so, all other inputs must contain 
the same number of values or a single value that applies to all. For example, if 
StartDate is an n-row character array of date strings, then NumberMonths must 
be an n-by-1 vector of integers or a single integer. TargetDate is then an n-by-1 
vector of date numbers.

StartDate Enter as serial date numbers or date strings.

NumberMonths Vector containing number of months in future (positive) or past 
(negative). Values must be in integer form.

DayFlag (Optional) Vector containing values that specify how the actual 
day number for the target date in future or past month is 
determined. 0 (default) = day number should be the day in the 
future or past month corresponding to the actual day number of 
the start date. 1 = day number should be the first day of the 
future or past month. 2 = day number should be the last day of 
the future or past month.

This flag has no effect if EndMonthRule is set to 1.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. 1 = rule in effect, 
meaning that if you are beginning on the last day of a month, and 
the month has 30 or fewer days, you will end on the last actual 
day of the future or past month regardless of whether that month 
has 28, 29, 30 or 31 days)

0 = rule off (default), meaning that the rule is not in effect.
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Description TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis, 
EndMonthRule) returns the serial date number of the target date in the future 
or past.

Use datestr to convert serial date numbers to formatted date strings.

Examples Day = datemnth('3 jun 2001', 6, 0, 0, 0)
Day =
      731188
datestr(Day)
ans =
03-Dec-2001

Day = datemnth('3 jun 2001', 6, 1, 0, 1); datestr(Day)
ans =
01-Dec-2001

Day = datemnth('31 jan 2001', 5, 0, 0, 0); datestr(Day)
ans =
30-Jun-2001

Day = datemnth('31 jan 2001', 5, 1, 0, 0); datestr(Day)
ans =
01-Jun-2001

Day = datemnth('31 jan 2001', 5, 1, 0, 1); datestr(Day)
ans =
30-Jun-2001

Day = datemnth('31 jan 2001', 5, 2, 0, 1); datestr(Day)
ans =
30-Jun-2001

Months = [1; 3; 5; 7; 9];
Day = datemnth('31 jan 2001', Months); datestr(Day)
ans =
28-Feb-2001
30-Apr-2001
30-Jun-2001
31-Aug-2001
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31-Oct-2001

See Also datestr, datevec, days360, days365, daysact, daysdif, wrkdydif
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5datenumPurpose Create date number

Syntax DateNumber = datenum(DateString)
DateNumber = datenum(DateString, Pivot)
DateNumber = datenum(Year, Month, Day)
DateNumber = datenum(Year, Month, Day, Hour, Minute, Second)

Description DateNumber = datenum(DateString) returns a serial date number given a 
date string. Date numbers are the number of days that has passed since a base 
date. In MATLAB, date number 1 is January 1, 0000 A.D. If the input includes 
time components, the date number includes a fractional component. 

The date string can be any of several forms.

'19-may-1999'
'may 19, 1999'
'19-may-99'
'19-may' (current year assumed)
'5/19/99'
'5/19' (current year assumed)
'19-may-1999, 18:37'
'19-may-1999, 6:37 pm'
'5/19/99/18:37'
'5/19/99/6:37 pm'

Certain formats may not contain enough information to compute a date     
number. In these cases, missing values default to 0 for hours, minutes, and 
seconds; January for the month; and 1 for the day of month. The year defaults 
to the current year. Unless you specify a pivot year, date strings with 
two-character years, e.g., 12-june-12, are assumed to lie within the 100-year 
period centered about the current year.

DateNumber = datenum(DateString, Pivot) assumes that two-character 
years lie within the 100-year period beginning with the pivot year. The default 
pivot year is the current year minus 50 years. 

DateNumber = datenum(Year, Month, Day)  returns a serial date number 
given year, month, and day integers.
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DateNumber = datenum(Year, Month, Day, Hour, Minute, Second)  
returns a serial date number given year, month, day, hour, minute, and second 
integers.

Note  This function now ships with basic MATLAB. It originally shipped only 
with the Financial Toolbox. This description remains here for your 
convenience.

Examples DateNumber = datenum('19-may-1999')
DateNumber = 730259

DateNumber = datenum('5/19/99')
DateNumber = 730259

DateNumber = datenum('19-may-1999, 6:37 pm')
DateNumber = 730259.78

DateNumber = datenum('5/19/99/18:37')
DateNumber = 730259.78

DateNumber = datenum(1999, 5, 19)
DateNumber = 730259

DateNumber = datenum(1999, 1:6, 19)
DateNumber = [730139  730170  730198  730229  730259  730290]

DateNumber = datenum(1999, 5, 19, 18, 37, 0)
DateNumber = 730259.78

DateNumber = datenum(730259)
DateNumber = 730259

The next example demonstrates the use of the pivot year in interpreting date 
strings with two-character years.

DateNumber = datenum('12-june-12 )
DateNumber = 

735032 
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datestr(735032)
ans =
12-Jun-2012

DateNumber = datenum('12-june-12 ,1900)
DateNumber = 

698507
datestr(698507)
ans =
12-Jun-1912

See Also datedisp, datestr, datevec, daysact, now, today
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5datestrPurpose Create date string

Syntax DateString = datestr(Date, DateForm)
DateString = datestr(Date, DateForm, Pivot)
DateString = datestr(Date)

Description DateString = datestr(Date, DateForm)  converts a date number or a date 
string to a date string. DateForm specifies the format of DateString. Date 
strings with two-character years, e.g., 12-june-12, are assumed to lie within 
the 100-year period centered about the current year.

DateString = datestr(Date, DateForm, Pivot) assumes that 
two-character years lie within the 100-year period beginning with the pivot 
year. The default pivot year is the current year minus 50 years.

Note  MATLAB internal date handling and calculations generate no 
ambiguous values. However, whenever possible, programmers should use date 
strings containing four-digit years or serial date numbers.

DateString = datestr(Date)  assumes DateForm is 1, 16, or 0 depending on 
whether the date number Date contains a date, time, or both, respectively. If 
Date is a date string, the function assumes DateForm is 1.

DateForm Format Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 
15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00 

3 'mmm' Mar

4 'm' M 

5 'mm' 03 

6 'mm/dd' 03/01
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7 'dd' 01

8 'ddd' Wed 

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1 01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd.yyyy HH:MM:SS' Mar.01,2000 
15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY Q1-2001

28 'mmmyyyy' Mar2000

DateForm Format Example
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Note  This function now ships with basic MATLAB. It originally shipped only 
with the Financial Toolbox. This description remains here for your 
convenience.

Examples DateString = datestr(730123, 1)
DateString = 03-Jan-1999

DateString = datestr(730123, 2)
DateString = 01/03/99

DateString = datestr(730123, 12)
DateString = Jan99

DateString = datestr(730123.776, 0)
DateString = 03-Jan-1999 18:37:26

DateString = datestr('1/03', 1) (assuming the current year is 1999)
DateString = 03-Jan-1999

DateString = datestr(730123)
DateString = 03-Jan-1999

DateString = datestr([730123 730154 730182 730213 730243 730274])
DateString =
03-Jan-1999
03-Feb-1999
03-Mar-1999
03-Apr-1999
03-May-1999
03-Jun-1999

DateString = datestr('1/03')
DateString = 03-Jan-1999 (assuming the current year is 1999)

See Also dateaxis, datedisp, datenum, datevec, daysact, now, today
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5datevecPurpose Date components

Syntax DateVector = datevec(Date)
DateVector = datevec(Date, Pivot)
[Year, Month, Day, Hour, Minute, Second] = datevec(Date)

Description DateVector = datevec(Date)  converts a date number or a date string to a 
date vector whose elements are [Year Month Day Hour Minute Second]. The 
first five elements are integers, the sixth is a floating-point number. Date 
strings with two-character years, e.g., 12-june-12, are assumed to lie within 
the 100-year period centered about the current year.

DateVector = datevec(Date, Pivot) assumes that two-character years lie 
within the 100-year period beginning with the pivot year. The default pivot 
year is the current year minus 50 years.

Note  MATLAB internal date handling and calculations generate no 
ambiguous values. However, whenever possible, programmers should use date 
strings containing four-digit years or serial date numbers.

[Year, Month, Day, Hour, Minute, Second] = datevec(Date)  converts a 
date number or a date string to a date vector and returns the components of the 
date vector as individual variables.

Note  This function now ships with basic MATLAB. It originally shipped only 
with the Financial Toolbox. This description remains here for your 
convenience.

Examples DateVec = datevec('28-Jul-00')
DateVec =
        2000 7 28 0 0 0

DateVec = datevec(730695)
DateVec =
        2000 7 28 0 0 0
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DateVec = datevec(730695.776)

DateVec =
        2000 7 28 18 37 26.4

[Year, Month, Day, Hour, Minute, Second] = datevec(730695.776)

Year =
  2000

Month =
     7

Day =
    28

Hour =
    18

Minute =
    37

Second =
    26.4

[Year, Month, Day] = datevec(730695:730697)

Year =
    2000    2000    2000

Month =
       7       7       7

Day =
      28      29      30

See Also datenum, datestr, now, today
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5datewrkdyPurpose Date of future or past workday

Syntax EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays)

Arguments

Any input can contain multiple values, but if so, all other inputs must contain 
the same number of values or a single value that applies to all. For example, if 
StartDate is an n-row character array of date strings, then NumberWorkDays 
must be an n-by-1 vector of integers or a single integer. EndDate is then an 
n-by-1 vector of date numbers.

Description EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays)  
returns the serial number of the date a given number of workdays before or 
after the start date. 

Use datestr to convert serial date numbers to formatted date strings.

Examples Workday = datewrkdy('12-dec-2000', 16, 2);
datestr(Workday)
ans =
04-Jan-2001
NumDays = [16; 20; 44];
Workdays = datewrkdy('12-dec-2000', NumDays, 2);
datestr(Workdays)
ans =
4-Jan-2001
10-Jan-2001
13-Feb-2001

See Also busdate, holidays, isbusday, wrkdydif

StartDate Start date vector. Enter as serial date numbers or date 
strings.

NumberWorkDays Vector containing number of work or business days in 
future (positive) or past (negative), including the starting 
date. 

NumberHolidays Vector containing values for the number of holidays 
within NumberWorkDays. NumberHolidays and 
NumberWorkDays must have the same sign.
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5dayPurpose Day of month

Syntax DayMonth = day(Date)

Description DayMonth = day(Date)  returns the day of the month given a serial date 
number or date string.

Examples DayMonth = day(730544)

or 

DayMonth = day('2/28/00')

returns DayMonth = 28

See Also datevec, eomday, month, year
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5days360Purpose Days between dates based on 360-day year (SIA compliant)

Syntax NumDays = days360(StartDate, EndDate)

Arguments

Either input can contain multiple values, but if so, the other must contain the 
same number of values or a single value that applies to all. For example, if 
StartDate is an n-row character array of date strings, then EndDate must be 
an n-by-1 vector of integers or a single integer. NumDays is then an n-by-1 vector 
of date numbers.

Description NumDays = days360(StartDate, EndDate)  returns the number of days 
between StartDate and EndDate based on a 360-day year (i.e., all months 
contain 30 days). If EndDate is earlier than StartDate, NumDays is negative. 

Examples NumDays = days360('15-jan-2000', '15-mar-2000')

NumDays =

    60

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days360('15-jan-2000', MoreDays)

NumDays =

    60
    90
   150

See Also days365, daysact, daysdif, wrkdydif, yearfrac

References Addendum to Securities Industry Association, Standard Securities Calculation 
Methods: Fixed Income Securities Formulas for Analytic Measures, Vol. 2, 
Spring 1995.

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.
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5days360ePurpose Days between dates based on a 360 day year (European)

Syntax NumDays = days360e(StartDate, EndDate)

Arguments

Either input can contain multiple values, but if so, the other must contain the 
same number of values or a single value that applies to all. 

Description NumDays = days360e(StartDate, EndDate)  returns a vector or scalar value 
representing the number of days between StartDate and EndDate based on a 
360-day year (i.e., all months contain 30 days). If EndDate is earlier than 
StartDate, NumDays is negative.

This day count convention is used primarily in Europe. Under this convention 
all months contain 30 days.

Examples Example 1. Use this convention to find the number of days in the month of 
January.

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360e(StartDate, EndDate)

NumDays =

    30

Example 2. Use this convention to find the number of days in February during 
a leap year.

StartDate = '1-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360e(StartDate, EndDate)

NumDays =

StartDate Row vector, column vector, or scalar value in serial date 
number or date string format. 

EndDate Row vector, column vector, or scalar value in serial date 
number or date string format. 
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    30

Example 3. Use this convention to find the number of days in February of a 
non- leap year.

StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';

NumDays = days360e(StartDate, EndDate)

NumDays =

    30

See Also days360, days360isda, days360psa
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5days360isdaPurpose Days between dates based on a 360 day year (ISDA)

Syntax NumDays = days360isda(StartDate, EndDate)

Arguments

Either input can contain multiple values, but if so, the other must contain the 
same number of values or a single value that applies to all. 

Description NumDays = days360isda(StartDate, EndDate)  returns a vector or scalar 
value representing the number of days between StartDate and EndDate based 
on a 360-day year (i.e., all months contain 30 days). If EndDate is earlier than 
StartDate, NumDays is negative.

Under this convention all months contain 30 days.

Examples Example 1. Use this convention to find the number of days in the month of 
January.

StartDate = '1-Jan-2002';
EndDate = '1-Feb-2002';
NumDays = days360isda(StartDate, EndDate)

NumDays =

    30

Example 2. Use this convention to find the number of days in February during 
a leap year.

StartDate = '1-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360isda(StartDate, EndDate)

NumDays =

    30

StartDate Row vector, column vector, or scalar value in serial date 
number or date string format. 

EndDate Row vector, column vector, or scalar value in serial date 
number or date string format. 
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Example 3. Use this convention to find the number of days in February of a 
non- leap year.

StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360isda(StartDate, EndDate)

NumDays =

    30

See Also days360, days360e, days360psa
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5days360psa Purpose Days between dates based on a 360 day year (PSA)

Syntax NumDays = days360psa(StartDate, EndDate)

Arguments

Either input can contain multiple values, but if so, the other must contain the 
same number of values or a single value that applies to all. 

Description NumDays = days360psa(StartDate, EndDate)  returns a vector or scalar 
value representing the number of days between StartDate and EndDate based 
on a 360-day year (i.e., all months contain 30 days). If EndDate is earlier than 
StartDate, NumDays is negative.

Under this payment convention all months contain 30 days. In both leap and 
non-leap years, if the StartDate is the last day of February, this day is 
considered to be day 30 of the month. 

Examples Example 1. Use this convention to find the number of days in between the last 
day of February and the first day of March during a leap year.

StartDate = '29-Feb-2000';
EndDate = '1-Mar-2000';
NumDays = days360psa(StartDate, EndDate)

NumDays =

    1

Example 2. Use this convention to find the number of days in between the last 
day of February and the first day of March during a non-leap year.

StartDate = '28-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360psa(StartDate, EndDate)

StartDate Row vector, column vector, or scalar value in serial date 
number or date string format. 

EndDate Row vector, column vector, or scalar value in serial date 
number or date string format. 
5-148



days360psa
NumDays =

    1

As expected, the number of days in both cases is the same. The convention 
always assumes that the last day of February is the 30th day.

See Also days360, days360e, days360isda
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5days365Purpose Days between dates based on 365-day year

Syntax NumDays = days365(StartDate, EndDate)

Arguments

Either input can contain multiple values, but if so, the other must contain the 
same number of values or a single value that applies to all. For example, if 
StartDate is an n-row character array of date strings, then EndDate must be 
an n-by-1 vector of integers or a single integer. NumDays is then an n-by-1 vector 
of date numbers.

Description NumDays = days365(StartDate, EndDate) returns the number of days 
between dates StartDate and EndDate based on a 365-day year. (All months 
contain their actual number of days. February always contains 28 days.) If 
EndDate is earlier than StartDate, NumDays is negative. Enter dates as serial 
date numbers or date strings.

Examples NumDays = days365('15-jan-2000', '15-mar-2000')

NumDays =

    59

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days365('15-jan-2000', MoreDays)

NumDays =

    59
    90
   151

See Also days360, daysact, daysdif, wrkdydif, yearfrac

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.
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5daysactPurpose Actual number of days between dates

Syntax NumDays = daysact(StartDate, EndDate)

Arguments

Either input can contain multiple values, but if so, the other must contain the 
same number of values or a single value that applies to all. For example, if 
StartDate is an n-row character array of date strings, then EndDate must be 
an n-row character array of date strings or a single date.  NumDays is then an 
n-by-1 vector of numbers.

Description NumDays = daysact(StartDate, EndDate)  returns the actual number of days 
between two dates. Enter dates as serial date numbers or date strings.  
NumDays is negative if  EndDate is earlier than StartDate.

NumDays = daysact(StartDate)  returns the actual number of days between 
the MATLAB base date and StartDate. In MATLAB, the base date 1 is 
1-Jan-0000 A.D. See datenum for a similar function.

Examples NumDays = daysact('7-sep-2002',  '25-dec-2002')
NumDays =
   109

NumDays = daysact('9/7/2002')
NumDays =
      731466

MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];
NumDays = daysact(MoreDays, '12/25/2002')
NumDays =
   109
    64
    50

See Also datenum, datevec, days360, days365, daysdif

StartDate Enter as serial date numbers or date strings.

EndDate (Optional) Enter as serial date numbers or date strings.
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5daysaddPurpose Date away from a starting date for any day-count basis

Syntax NumDays = daysadd(StartDate, NumDays, Basis)

Arguments

Note  When using the 30/360 day-count basis, it is not always possible to find 
the exact date NumDays number of days away because of a known discontinuity 
in the method of counting days. A warning is displayed if this occurs. 

Description NumDays = daysadd(StartDate, NumDays, Basis)  returns a date NumDays 
number of days away from StartDate, using the given day-count basis.

Examples NewDate = daysadd('01-Feb-2004', 31)

NewDate =

      732009

datestr(NewDate)

ans =

03-Mar-2004

StartDate Start date. Enter as serial date numbers or date strings.

NumDays Integer number of days from start date. Enter a negative integer 
for dates before start date.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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NewDate = daysadd('01-Feb-2004', 31, 1)

NewDate =

      732008

datestr(NewDate)

ans =

02-Mar-2004

See Also daysdif

References Stigum, Marcia L. and Franklin Robinson, Money Market and Bond 
Calculations, Richard D. Irwin, 1996, ISBN 1-55623-476-7
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5daysdifPurpose Days between dates for any day-count basis

Syntax NumDays = daysdif(StartDate, EndDate, Basis)

Arguments

Any input argument can contain multiple values, but if so, the other inputs 
must contain the same number of values or a single value that applies to all. 
For example, if StartDate is an n-row character array of date strings, then 
EndDate must be an n-row character array of date strings or a single date.  
NumDays is then an n-by-1 vector of numbers.

Description NumDays = daysdif(StartDate, EndDate, Basis)  returns the number of 
days between dates StartDate and EndDate using the given day-count basis. 
Enter dates as serial date numbers or date strings.

This function is a helper function for the bond pricing and yield functions. It is 
designed to make the code more readable and to eliminate redundant calls 
within if statements.

Examples NumDays = daysdif('3/1/99', '3/1/00', 1)
NumDays =
   360

MoreDays = ['3/1/2001'; '3/1/2002'; '3/1/2003']; 
NumDays = daysdif('3/1/98', MoreDays)
NumDays =
         1096
         1461
         1826

See Also datenum, days360, days365, daysact, daysadd, wrkdydif, yearfrac

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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References Stigum, Marcia L. and Franklin Robinson, Money Market and Bond 
Calculations, Richard D. Irwin, 1996, ISBN 1-55623-476-7
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5dec2thirtytwoPurpose Decimal to thirty-second quotation

Syntax [OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy)

Arguments

Description [OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy) changes 
a decimal price quotation for a bond or bond future to a fraction with a 
denominator of 32.

OutNumber is InNumber rounded downward to the closest integer. 

Fractions is the fractional part in units of thirty-second with accuracy as 
prescribed by the input Accuracy.

Examples Two bonds are quoted with decimal prices of 101.78 and 102.96. Convert these 
prices to fractions with a denominator of 32.

InNumber  = [101.78; 102.96];

[OutNumber, Fractions] = dec2thirtytwo(InNumber)

OutNumber =

   101
   102

Fractions =

    25
    31

See Also thirtytwo2dec

InNumber Input number as a decimal fraction.

Accuracy (Optional) Rounding. Default = 1, round down to nearest 
thirty second. Other values are 2 (nearest half), 
4 (nearest quarter) and 10 (nearest decile).
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5depfixdbPurpose Fixed declining-balance depreciation schedule

Syntax Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)

Arguments

Description Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)  
calculates the fixed declining-balance depreciation for each period.

Examples A car is purchased for $11,000 with a salvage value of $1500 and a lifetime of 
eight years. To calculate the depreciation for the first five years

Depreciation = depfixdb(11000, 1500, 8, 5)

returns

Depreciation =
       2425.08     1890.44     1473.67     1148.78     895.52

See Also depgendb, deprdv, depsoyd, depstln

Cost Initial value of the asset.

Salvage Salvage value of the asset.

Life Life of the asset in years.

Period Number of years to calculate.

Month (Optional) Number of months in the first year of asset life. 
Default = 12.
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5depgendbPurpose General declining-balance depreciation schedule

Syntax Depreciation = depgendb(Cost, Salvage, Life, Factor)

Arguments

Description Depreciation = depgendb(Cost, Salvage, Life, Factor)  calculates the 
declining-balance depreciation for each period.

Examples A car is purchased for $11,000 and is to be depreciated over five years. The 
estimated salvage value is $1000. Using the double-declining-balance method, 
the function calculates the depreciation for each year and returns the 
remaining depreciable value at the end of the life of the car.

Depreciation = depgendb(11000, 1000, 5, 2)

returns

Depreciation =
       4400.00     2640.00     1584.00     950.40     425.60

See Also depfixdb, deprdv, depsoyd, depstln

Cost Cost of the asset.

Salvage Estimated salvage value of the asset.

Life Number of periods over which the asset is depreciated.

Factor Depreciation factor. Factor = 2 uses the 
double-declining-balance method.
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5deprdvPurpose Remaining depreciable value

Syntax Value = deprdv(Cost, Salvage, Accum)

Arguments

Description Value = deprdv(Cost, Salvage, Accum)  returns the remaining depreciable 
value for an asset.

Examples The cost of an asset is $13,000 with a life of 10 years. The salvage value is 
$1000. First find the accumulated depreciation with the straight-line 
depreciation function, depstln. Then find the remaining depreciable value 
after six years.

Accum = depstln(13000, 1000, 10) * 6

Accum =
       7200.00

Value = deprdv(13000, 1000, 7200)

Value =
       4800.00

See Also depfixdb, depgendb, depsoyd, depstln

Cost Cost of the asset.

Salvage Salvage value of the asset.

Accum Accumulated depreciation of the asset for prior periods.
5-159



depsoyd
5depsoydPurpose Sum of years’ digits depreciation

Syntax Sum = depsoyd(Cost, Salvage, Life)

Arguments

Description Sum = depsoyd(Cost, Salvage, Life)  calculates the depreciation for an 
asset using the sum of years’ digits method.  Sum is a 1-by-Life vector of 
depreciation values with each element corresponding to a year of the asset’s 
life.

Examples The cost of an asset is $13,000 with a life of 10 years.  The salvage value of the 
asset is $1000.

Sum = depsoyd(13000, 1000, 10)'

returns

Sum =
       2181.82
       1963.64
       1745.45
       1527.27
       1309.09
       1090.91
        872.73
        654.55
        436.36
        218.18

See Also depfixdb, depgendb, deprdv, depstln

Cost Cost of the asset.

Salvage Salvage value of the asset.

Life Depreciable life of the asset in years.
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5depstlnPurpose Straight-line depreciation schedule

Syntax Depreciation = depstln(Cost, Salvage, Life)

Arguments

Description Depreciation = depstln(Cost, Salvage, Life)  calculates straight-line 
depreciation for an asset.

Examples The cost of an asset is $13,000 with a life of 10 years. The salvage value of the 
asset is $1000.

Depreciation = depstln(13000, 1000, 10)

returns

Depreciation =
               1200

See Also depfixdb, depgendb, deprdv, depsoyd

Cost Cost of the asset.

Salvage Salvage value of the asset.

Life Depreciable life of the asset in years.
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5disc2zeroPurpose Zero curve given a discount curve

Syntax [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle, 
Compounding, Basis)

Arguments

Description [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle, 
Compounding, Basis) returns a zero curve given a discount curve and its 
maturity dates.

DiscRates Column vector of discount factors, as decimal fractions. In 
aggregate, the factors in DiscRates constitute a discount 
curve for the investment horizon represented by 
CurveDates.

CurveDates Column vector of maturity dates (as serial date numbers) 
that correspond to the discount factors in DiscRates. 

Settle Serial date number that is the common settlement date for 
the discount rates in DiscRates.

Compounding (Optional) Output compounding. A scalar that sets the 
compounding frequency per year for annualizing the 
output zero rates. Allowed values are:

1 annual compounding

2 semiannual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

Basis (Optional) Day-count basis for annualizing the output zero 
rates. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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Examples Given discount factors DiscRates over a set of maturity dates CurveDates, and 
a settlement date Settle

DiscRates = [0.9996
             0.9947
             0.9896
             0.9866
             0.9826
             0.9786
             0.9745
             0.9665
             0.9552
             0.9466];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

Set daily compounding for the output zero curve, on an actual/365 basis.

Compounding = 365;
Basis = 3;

ZeroRates Column vector of decimal fractions. In aggregate, the rates in 
ZeroRates constitute a zero curve for the investment horizon 
represented by CurveDates. The zero rates are the yields to 
maturity on theoretical zero-coupon bonds.

CurveDates Column vector of maturity dates (as serial date numbers) that 
correspond to the zero rates. This vector is the same as the input 
vector CurveDates. 
5-163



disc2zero
Execute the function

[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,... 
Settle, Compounding, Basis)

which returns the zero curve ZeroRates at the maturity dates CurveDates.

ZeroRates =
    0.0487
    0.0510
    0.0523
    0.0524
    0.0530
    0.0526
    0.0530
    0.0532
    0.0549
    0.0536

CurveDates =
      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

For readability, DiscRates and ZeroRates are shown here only to the basis 
point. However, MATLAB computed them at full precision. If you enter 
DiscRates as shown, ZeroRates may differ due to rounding.

See Also zero2disc and other functions for Term Structure of Interest Rates
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5discratePurpose Bank discount rate of a money market security

Syntax DiscRate = discrate(Settle, Maturity, Face, Price, Basis)

Arguments

Description DiscRate = discrate(Settle, Maturity, Face, Price, Basis)  finds the 
bank discount rate of a security. The bank discount rate normalizes by the face 
value of the security (e.g., U. S. Treasury Bills) and understates the true yield 
earned by investors.

Examples DiscRate = discrate('12-jan-2000', '25-jun-2000', 100, 97.74, 0)

returns

DiscRate =

    0.0501

a discount rate of 5.01%.

See Also acrudisc, fvdisc, prdisc, ylddisc

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. 
Formula 1.

Settle Enter as serial date number or date string. Settle must be 
earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Price Price of the security.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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5ecmnfishPurpose Fisher information matrix

Syntax Fisher = ecmnfish(Data, Covariance, InvCovariance, MatrixFormat)

Arguments

Description Fisher = ecmnfish(Data, Covariance, InvCovariance, MatrixFormat)
computes a NUMPARAMS-by-NUMPARAMS Fisher information matrix based on 
current parameter estimates, where 

NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2  

if MatrixFormat = 'full' and 

NUMPARAMS = NUMSERIES 

if MatrixFormat = 'meanonly'.

This routine is very slow for NUMSERIES > 10 or NUMSAMPLES > 1000.

The data matrix has NaNs for missing observations.   The multivariate normal 
model has

NUMPARAMS = NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2

distinct parameters. Therefore, the full Fisher information matrix is of size 
NUMPARAMS-by-NUMPARAMS. The first NUMSERIES parameters are estimates for 
the mean of the data in Mean, and the remaining 

Data NUMSAMPLES-by-NUMSERIES matrix of observed multivariate 
normal data 

Covariance NUMSERIES-by-NUMSERIES matrix with covariance estimate 
of Data

InvCovariance (Optional) Inverse of covariance matrix: inv(Covariance) 

MatrixFormat (Optional) String that identifies parameters included in the 
Fisher information matrix. If MatrixFormat = [] or ' ', the 
default method full is used. The parameter choices are                       

• full — (Default) Compute full Fisher information 
matrix.

• meanonly — Compute only components of the Fisher 
information matrix associated with the mean. 
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NUMSERIES*(NUMSERIES + 1)/2 parameters are estimates for the 
lower-triangular portion of the covariance of the data in Covariance, in 
row-major order.

If MatrixFormat = 'meanonly', the number of parameters is reduced to 
NUMPARAMS = NUMSERIES, where the Fisher information matrix is computed for 
the mean parameters only. In this format, the routine executes fastest. 

This routine expects the inverse of the covariance matrix as an input. If you do 
not pass in the inverse, the routine computes it. You can obtain an 
approximation for the lower-bound standard errors of estimation of the 
parameters from

Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Fisher)));

Because of missing information, these standard errors may be smaller than the 
estimated standard errors derived from the expected Hessian matrix. To see 
the difference, compare with standard errors calculated with ecmnhess.

See Also ecmnhess, ecmnmle
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5ecmnhessPurpose Hessian of negative log-likelihood function

Syntax Hessian = ecmnhess(Data, Covariance, InvCovariance, MatrixFormat)

Arguments

Description Hessian = ecmnhess(Data, Covariance, InvCovariance, MatrixFormat)
computes a NUMPARAMS -by-NUMPARAMS Hessian matrix of the observed negative 
log-likelihood function based upon current parameter estimates, where

NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2 

if MatrixFormat = 'full' and 

NUMPARAMS = NUMSERIES 

if MatrixFormat = 'meanonly'.

This routine is very slow for NUMSERIES > 10 or NUMSAMPLES > 1000.

The data matrix has NaNs for missing observations. The multivariate normal 
model has

NUMPARAMS = NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2

distinct parameters. Therefore, the full Hessian is a NUMPARAMS-by-NUMPARAMS 
matrix.

The first NUMSERIES parameters are estimates for the mean of the data in Mean 
and the remaining NUMSERIES*(NUMSERIES + 1)/2 parameters are estimates 

Data NUMSAMPLES-by-NUMSERIES matrix of observed multivariate 
normal data 

Covariance NUMSERIES-by-NUMSERIES matrix with covariance estimate 
of Data

InvCovariance (Optional) Inverse of covariance matrix: inv(Covariance) 

MatrixFormat (Optional) String that identifies parameters included in the 
Hessian matrix. If MatrixFormat = [] or ' ', the default 
method full is used. The parameter choices are                       

• full — (Default) Compute full Hessian matrix.

• meanonly — Compute only components of the Hessian 
matrix associated with the mean. 
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for the lower-triangular portion of the covariance of the data in Covariance, in 
row-major order.

If MatrixFormat = 'meanonly', the number of parameters is reduced to 
NUMPARAMS = NUMSERIES, where the Hessian is computed for the mean 
parameters only. In this format, the routine executes fastest.

This routine expects the inverse of the covariance matrix as an input. If you do 
not pass in the inverse, the routine computes it.

The equation

Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Hessian)));

provides an approximation for the observed standard errors of estimation of 
the parameters.

Because of the additional uncertainties introduced by missing information, 
these standard errors may be larger than the estimated standard errors 
derived from the Fisher information matrix. To see the difference, compare 
with standard errors calculated from ecmnfish.

See Also ecmnfish, ecmnmle
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5ecmninitPurpose Initial mean and covariance

Syntax [Mean, Covariance] = ecmninit(Data, InitMethod)

Arguments

Description [Mean, Covariance] = ecmninit(Data, InitMethod) creates initial mean 
and covariance estimates for the function ecmnmle. Mean is a NUMSERIES-by-1 
column vector estimate for the mean of Data. Covariance is a 
NUMSERIES-by-NUMSERIES matrix estimate for the covariance of Data.

Algorithm Model
The general model is

where each row of Data is an observation of Z.

Each observation of Z is assumed to be iid (independent identically distributed) 
multivariate normal, and missing values are assumed to be missing at random 
(MAR). 

Initialization Methods
This routine has three initialization methods that cover most cases, each with 
its advantages and disadvantages. 

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES 
samples of a NUMSERIES-dimensional random vector. 
Missing values are indicated by NaNs. 

InitMethod (Optional) String that identifies one of three defined 
initialization methods to compute initial estimates for the 
mean and covariance of the data. If InitMethod = [] or '', 
the default method nanskip is used. The initialization 
methods are

• nanskip — (Default) Skip all records with NaNs. 

• twostage — Estimate mean. Fill NaNs with the mean. 
Then estimate the covariance.

• diagonal — Form a diagonal covariance. 

Z N Mean Covariance,( )∼
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nanskip. The nanskip method works well with small problems (fewer                   
than 10 series or with monotone missing data patterns). It skips over any              
records with NaNs and estimates initial values from complete-data records              
only. This initialization method tends to yield fastest convergence of the                      
ECM algorithm. This routine switches to the twostage method if it determines 
that significant numbers of records contain NaN.

twostage. The twostage method is the best choice for large problems (more              
than 10 series). It estimates the mean for each series using all available data 
for each series. It then estimates the covariance matrix with missing values   
treated as equal to the mean rather than as NaNs. This initialization method is 
quite robust but tends to result in slower convergence of the ECM algorithm. 

diagonal.  The diagonal method is a worst-case approach that deals with 
problematic data, such as disjoint series and excessive missing data (more than 
33% missing data). Of the three initialization methods, this method causes the 
slowest convergence of the ECM algorithm. 

See Also ecmnmle
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5ecmnmlePurpose Mean and covariance of incomplete multivariate normal data

Syntax [Mean, Covariance] = ecmnmle(Data, InitMethod, MaxIterations, 
Tolerance, Mean0, Covar0)

Arguments Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES 
samples of a NUMSERIES-dimensional random vector. 
Missing values are indicated by NaNs. A sample is also 
called an observation or a record.

InitMethod (Optional) String that identifies one of three defined 
initialization methods to compute initial estimates for the 
mean and covariance of the data. If InitMethod = [] or '', 
the default method nanskip is used. The initialization 
methods are

• nanskip — (Default) Skip all records with NaNs. 

• twostage — Estimate mean. Fill NaNs with mean. Then 
estimate covariance.

• diagonal — Form a diagonal covariance. 

Note  If you supply Mean0 and Covar0, InitMethod is not 
executed. 

MaxIterations (Optional) Maximum number of iterations for the 
expectation conditional maximization (ECM) algorithm. 
Default = 50.

Tolerance (Optional) Convergence tolerance for the ECM algorithm 
(Default = 1.0e-8.) If Tolerance ≤ 0, perform maximum 
iterations specified by MaxIterations and do not evaluate 
the objective function at each step unless in display mode, 
as described below. 
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Description [Mean, Covariance] = ecmnmle(Data, InitMethod, MaxIterations, 
Tolerance, Mean0, Covar0)  estimates the mean and covariance of a data set. 
If the data set has missing values, this routine implements the ECM algorithm 
of Meng and Rubin [2] with enhancements by Sexton and Swensen [3]. ECM 
stands for expectation conditional maximization, a conditional maximization 
form of the EM algorithm of Dempster, Laird, and Rubin [4]. 

This routine has two operational modes:

Display Mode. With no output arguments, this mode displays the convergence of 
the ECM algorithm. It estimates and plots objective function values for each 
iteration of the ECM algorithm until termination, as shown in the following 
plot.

Mean0 (Optional) Initial NUMSERIES-by-1 column vector estimate 
for the mean. If you leave Mean0 unspecified ([]), the 
method specified by InitMethod is used. If you specify 
Mean0, you must also specify Covar0. 

Covar0 (Optional) Initial NUMSERIES-by-NUMSERIES matrix estimate 
for the covariance, where the input matrix must be 
positive-definite. If you leave Covar0 unspecified ([]), the 
method specified by InitMethod is used. If you specify 
Covar0, you must also specify Mean0. 
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Display mode can determine MaxIter and Tolerance values or serve as a 
diagnostic tool. The objective function is the negative log-likelihood function of 
the observed data and convergence to a maximum likelihood estimate 
corresponds with minimization of the objective.

Estimation Mode. With output arguments, this mode estimates the mean and 
covariance via the ECM algorithm.

Examples To see an example of how to use ecmnmle, run the demo program ecmguidemo.

Algorithm Model
The general model is

where each row of Data is an observation of Z.

Z N Mean Covariance,( )∼
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Each observation of Z is assumed to be iid (independent identically distributed) 
multivariate normal, and missing values are assumed to be missing at random 
(MAR). See Little and Rubin [1] for a precise definition of MAR.

This routine estimates the mean and covariance from given data. If data  
values are missing, the routine implements the ECM algorithm of Meng and 
Rubin [2] with enhancements by Sexton and Swensen [3]. 

If a record is empty (every value in a sample is NaN), this routine ignores the 
record because it contributes no information. If such records exist in the data, 
the number of nonempty samples used in the estimation is ≤ NumSamples.

The estimate for the covariance is a biased maximum likelihood estimate 
(MLE). To convert to an unbiased estimate, multiply the covariance by 

, where Count is the number of nonempty samples used in 
the estimation.

Requirements
This routine requires consistent values for NUMSAMPLES and NUMSERIES with 
NUMSAMPLES > NUMSERIES. It must have enough nonmissing values to converge. 
Finally, it must have a positive-definite covariance matrix. Although the 
references provide some necessary and sufficient conditions, general conditions 
for existence and uniqueness of solutions in the missing-data case do not exist. 
The main failure mode is an ill-conditioned covariance matrix estimate. 
Nonetheless, this routine works for most cases that have less than 15% missing 
data (a typical upper bound for financial data).

Initialization Methods
This routine has three initialization methods that cover most cases, each with 
its advantages and disadvantages. The ECM algorithm always converges to a 
minimum of the observed negative log-likelihood function. If you override the 
initialization methods, you must ensure that the initial estimate for the 
covariance matrix is positive-definite. 

The following is a guide to the supported initialization methods.

nanskip. The nanskip method works well with small problems (fewer                   
than 10 series or with monotone missing data patterns). It skips over any              
records with NaNs and estimates initial values from complete-data records              
only. This initialization method tends to yield fastest convergence of the                      

Count Count 1 )–⁄
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ECM algorithm. This routine switches to the twostage method if it determines 
that significant numbers of records contain NaN.

twostage. The twostage method is the best choice for large problems (more              
than 10 series). It estimates the mean for each series using all available data 
for each series. It then estimates the covariance matrix with missing values   
treated as equal to the mean rather than as NaNs. This initialization method is 
quite robust but tends to result in slower convergence of the ECM algorithm. 

diagonal.  The diagonal method is a worst-case approach that deals with 
problematic data, such as disjoint series and excessive missing data (more than 
33% of data missing). Of the three initialization methods, this method causes 
the slowest convergence of the ECM algorithm. If problems occur with this 
method, use display mode to examine convergence and modify either 
MaxIterations or Tolerance, or try alternative initial estimates with Mean0 
and Covar0. If all else fails, try

Mean0 = zeros(NumSeries);
Covar0 = eye(NumSeries,NumSeries);

Given estimates for mean and covariance from this routine, you can estimate 
standard errors with the companion routine ecmnstd.

Convergence
The ECM algorithm does not work for all patterns of missing values. Although 
it works in most cases, it can fail to converge if the covariance becomes 
singular. If this occurs, plots of the log-likelihood function tend to have a 
constant upward slope over many iterations as the log of the negative 
determinant of the covariance goes to zero. In some cases, the objective fails to 
converge due to machine precision errors. No general theory of missing data 
patterns exists to determine these cases. An example of a known failure occurs 
when two time series are proportional wherever both series contain 
nonmissing values.

 See Also ecmnfish, ecmnhess, ecmninit, ecmnobj, ecmnstd

References [1] Little, Roderick J. A. and Donald B. Rubin, Statistical Analysis with 
Missing Data, 2nd ed., John Wiley & Sons, Inc., 2002.
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[2] Meng, Xiao-Li and Donald B. Rubin, “Maximum Likelihood Estimation via 
the ECM Algorithm,” Biometrika, Vol. 80, No. 2, 1993, pp. 267-278.

[3] Sexton, Joe  and Anders Rygh Swensen, “ECM Algorithms that Converge at 
the Rate of EM,” Biometrika, Vol. 87, No. 3, 2000, pp. 651-662.

[4] Dempster, A. P.,  N. M. Laird, and Donald B. Rubin, “Maximum Likelihood 
from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical 
Society, Series B, Vol. 39, No. 1, 1977, pp. 1-37.
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5ecmnobjPurpose Multivariate normal negative log-likelihood function

Syntax Objective = ecmnobj(Data, Mean, Covariance, CholCovariance) 

Arguments

Description Objective = ecmnobj(Data, Mean, Covariance, CholCovariance)
computes the value of the observed negative log-likelihood function over the 
data given current estimates for the mean and covariance of the data.

The data matrix has NaNs for missing observations. The inputs Mean and    
Covariance are current estimates for model parameters.

This routine expects the Cholesky decomposition of the covariance matrix as an 
input. The routine computes the Cholesky decomposition if you do not explicitly 
specify it.

See Also chol, ecmnmle

Data NUMSAMPLES-by-NUMSERIES matrix of observed multivariate 
normal data 

Mean NUMSERIES-by-1 column vector with mean estimate of Data 

Covariance NUMSERIES-by-NUMSERIES matrix with covariance estimate 
of Data

CholCovariance (Optional) Cholesky decomposition of covariance matrix: 
chol(Covariance) 
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5ecmnstdPurpose Standard errors for mean and covariance of incomplete data

Syntax [StdMean, StdCovariance] = ecmnstd(Data, Mean, Covariance, Method)

Arguments

Description [StdMean, StdCovariance] = ecmnstd(Data, Mean, Covariance, Method)
computes standard errors for mean and covariance of incomplete data. 

StdMean is a NUMSERIES-by-1 column vector of standard errors of estimates for           
each element of the mean vector Mean.

StdCovariance is a NUMSERIES-by-NUMSERIES matrix of standard errors of 
estimates for each element of the covariance matrix Covariance.

Use this routine after estimating the mean and covariance of Data with 
ecmnmle. If the mean and distinct covariance elements are treated as the 
parameter  in a complete-data maximum-likelihood estimation, then as the 
number of samples increases,  attains asymptotic normality such that

where  is the mean and  is the Fisher information matrix.

Data NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES 
samples of a NUMSERIES-dimensional random vector. 
Missing values are indicated by NaNs.

Mean NUMSERIES-by-1 column vector of maximum-likelihood 
parameter estimates for the mean of Data using the 
expectation conditional maximization (ECM) algorithm

Covariance NUMSERIES-by-NUMSERIES matrix of maximum-likelihood 
covariance estimates for the covariance of Data using the 
ECM algorithm

Method (Optional) String indicating method of estimation for 
standard error calculations. The methods are

• hessian — (Default) Hessian of the observed negative 
log-likelihood function. 

• fisher — Fisher information matrix. 

θ
θ

θ E θ[ ] N 0 I 1– θ( ),( )∼–

E θ[ ] I θ( )
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With missing data, the Hessian  is a good approximation for the Fisher 
information (which can only be approximated when data is missing).

It is usually advisable to use the default Method since the resultant standard 
errors incorporate the increased uncertainty due to missing data. In particular, 
standard errors calculated with the Hessian are generally larger than 
standard errors calculated with the Fisher information matrix.

Note  This routine is very slow for NUMSERIES > 10 or NUMSAMPLES > 1000.

See Also ecmnmle

H θ( )
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5effrrPurpose Effective rate of return

Syntax Return = effrr(Rate, NumPeriods)

Arguments

Description Return = effrr(Rate, NumPeriods)  calculates the annual effective rate of 
return. Compounding continuously returns Return equivalent to (e^Rate-1).

Examples Find the effective annual rate of return based on an annual percentage rate of 
9% compounded monthly.

Return = effrr(0.09, 12)

returns

Return =

         0.0938 or 9.38%

See Also nomrr

Rate Annual percentage rate. Enter as a decimal fraction.

NumPeriods Number of compounding periods per year, an integer.
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5eomdatePurpose Last date of month

Syntax DayMonth = eomdate(Year, Month)

Description DayMonth = eomdate(Year, Month) returns the serial date number of the last 
date of the month for the given year and month. Enter Year as a four-digit 
integer; enter Month as an integer from 1 to 12.

Either input argument can contain multiple values, but if so, the other input 
must contain the same number of values or a single value that applies to all. 
For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n 
vector of integers or a single integer. DayMonth is then a 1-by-n vector of date 
numbers.

Use the function datestr to convert serial date numbers to formatted date 
strings.

Examples DayMonth = eomdate(2001, 2)
DayMonth =
      730910
datestr(DayMonth)

ans =
28-Feb-2001

Year = [2002 2003 2004 2005];
DayMonth = eomdate(Year, 2)
DayMonth =
      731275      731640      732006      732371

datestr(DayMonth)

ans =
28-Feb-2002
28-Feb-2003
29-Feb-2004
28-Feb-2005

See Also day, eomday, lbusdate, month, year
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5eomdayPurpose Last day of month

Syntax Day = eomday(Year, Month)

Description Day = eomday(Year, Month)  returns the last day of the month for the given 
year and month. Enter Year as a four-digit integer; enter Month as an integer 
from 1 to 12.

Either input argument can contain multiple values, but if so, the other input 
must contain the same number of values or a single value that applies to all. 
For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n 
vector of integers or a single integer. Day is then a 1-by-n vector of days.

Note  This function now ships with basic MATLAB. It originally shipped only 
with the Financial Toolbox. This description remains here for your 
convenience.

Examples Day = eomday(2000, 2)

Day =

    29

See Also day, eomdate, month
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5ewstatsPurpose Expected return and covariance from return time series

Syntax [ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries, 
DecayFactor, WindowLength)

Arguments

Description [ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries, 
DecayFactor, WindowLength) computes estimated expected returns, 
estimated covariance matrix, and the number of effective observations.

ExpReturn is a 1-by-NASSETS vector of estimated expected returns.

ExpCovariance is an NASSETS-by-NASSETS estimated covariance matrix. The 
standard deviations of the asset return processes are given by

     STDVec = sqrt(diag(ExpCovariance))  

The correlation matrix is

     CorrMat = ExpCovariance./( STDVec*STDVec' )

NumEffObs is the number of effective observations = 
(1-DecayFactor^WindowLength)/(1-DecayFactor). 

A smaller DecayFactor or WindowLength emphasizes recent data more strongly 
but uses less of the available data set.

RetSeries Return Series: number of observations (NUMOBS) by number 
of assets (NASSETS) matrix of equally spaced incremental 
return observations. The first row is the oldest observation, 
and the last row is the most recent.

DecayFactor (Optional) Controls how much less each observation is 
weighted than its successor. The kth observation back in 
time has weight DecayFactor^k. DecayFactor must lie in 
the range: 0 < DecayFactor <= 1.

Default = 1, the equally weighted linear moving average 
model (BIS).   

WindowLength (Optional) Number of recent observations in the 
computation. Default = NUMOBS.
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Examples RetSeries = [ 0.24 0.08 
              0.15 0.13 
              0.27 0.06 
              0.14 0.13 ];

DecayFactor = 0.98;

[ExpReturn, ExpCovariance] = ewstats(RetSeries, DecayFactor)

ExpReturn =

    0.1995    0.1002

ExpCovariance =

    0.0032   -0.0017
   -0.0017    0.0010

See Also cov, mean
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5fbusdatePurpose First business date of month

Syntax Date = fbusdate(Year, Month, Holiday, Weekend)

Arguments

Description Date = fbusdate(Year, Month, Holiday, Weekend) returns the serial date 
number for the first business date of the given year and month. Holiday 
specifies nontrading days.

Year and Month can contain multiple values. If one contains multiple values, 
the other must contain the same number of values or a single value that applies 
to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 
1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date 
numbers.

Use the function datestr to convert serial date numbers to formatted date 
strings.

Examples Example 1:

Date = fbusdate(2001, 11); datestr(Date)
ans =
01-Nov-2001

Year = [2002 2003 2004];
Date = fbusdate(Year, 11); datestr(Date)

ans =

Year Enter as four-digit integer.

Month Enter as integer from 1 to 12.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates 
in Holiday must be the same format: either serial date numbers or 
date strings. (Using date numbers improves performance.) The 
holidays function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the value 1 
indicating weekend days. The first element of this vector 
corresponds to Sunday. Thus, when Saturday and Sunday form the 
weekend (default), then Weekend = [1 0 0 0 0 0 1]. 
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01-Nov-2002
03-Nov-2003
01-Nov-2004

Example 2: You can indicate that Saturday is a business day by appropriately 
setting the Weekend argument.

Weekend = [1 0 0 0 0 0 0];

March 1, 2003, is a Saturday. Use fbusdate to check that this Saturday is 
actually the first business day of the month.

Date = datestr(fbusdate(2003, 3, [], Weekend))

Date =

01-Mar-2003

See Also busdate, eomdate, holidays, isbusday, lbusdate
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5frac2curPurpose Fractional currency value to decimal value

Syntax Decimal = frac2cur(Fraction, Denominator)

Description Decimal = frac2cur(Fraction, Denominator)  converts a fractional 
currency value to a decimal value.  Fraction is the fractional currency value 
input as a string, and Denominator is the denominator of the fraction.

Examples Decimal = frac2cur('12.1', 8)

returns

 Decimal =
           12.1250

See Also cur2frac, cur2str
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5frontconPurpose Mean-variance efficient frontier

Syntax [PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, 
ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups, 
GroupBounds)

Arguments ExpReturn 1 by number of assets (NASSETS) vector specifying the 
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of 
asset returns.

NumPorts (Optional) Number of portfolios generated along the 
efficient frontier. Returns are equally spaced between 
the maximum possible return and the minimum risk 
point. If NumPorts is empty (entered as [], frontcon 
computes 10 equally spaced points. When entering a 
target rate of return (PortReturn), enter NumPorts as an 
empty matrix [].

PortReturn (Optional) Vector of length equal to the number of 
portfolios (NPORTS) containing the target return values 
on the frontier. If PortReturn is not entered or [], 
NumPorts equally spaced returns between the minimum 
and maximum possible values are used. 

AssetBounds (Optional) 2-by-NASSETS matrix containing the lower and 
upper bounds on the weight allocated to each asset in 
the portfolio. Default lower bound = all 0s (no 
short-selling). Default upper bound = all 1s (any asset 
may constitute the entire portfolio).
5-189



frontcon
Description [PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, 
ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups, 
GroupBounds) returns the mean-variance efficient frontier with user-specified 
asset constraints, covariance, and returns. For a collection of NASSETS risky 
assets, computes a portfolio of asset investment weights that minimize the risk 
for given values of the expected return. The portfolio risk is minimized subject 
to constraints on the asset weights or on groups of asset weights.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is a NPORTS-by-1 vector of the expected return of each portfolio.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. 
Each row represents a portfolio. The total of all weights in a portfolio is 1.

frontcon generates a plot of the efficient frontier if you invoke it without 
output arguments.

The asset returns are assumed to be jointly normal, with expected mean     
returns of ExpReturn and return covariance ExpCovariance. The variance of a 
portfolio with 1-by-NASSETS weights PortWts is given by 
PortVar = PortWts*ExpCovariance*PortWts'. The portfolio expected return 
is PortReturn = dot(ExpReturn, PortWts).

Groups (Optional) Number of groups (NGROUPS)-by-NASSETS 
matrix specifying NGROUPS asset groups or classes. Each 
row specifies a group. Groups(i,j) = 1 (jth asset 
belongs in the ith group). Groups(i,j) = 0 (jth asset 
not a member of the ith group).

GroupBounds (Optional) NGROUPS-by-2 matrix specifying, for each 
group, the lower and upper bounds of the total weights of 
all assets in that group. Default lower bound = all 0s. 
Default upper bound = all 1s.   
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Examples Given three assets with expected returns of

ExpReturn = [0.1 0.2 0.15];

and expected covariance of

ExpCovariance = [ 0.0100   -0.0061    0.0042 
-0.0061    0.0400   -0.0252 
0.0042   -0.0252    0.0225];

compute the mean-variance efficient frontier for four points.

NumPorts = 4;
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,... 
ExpCovariance, NumPorts)

PortRisk =

    0.0426
    0.0483
    0.1089
    0.2000

PortReturn =

    0.1569
    0.1713
    0.1856
    0.2000

PortWts =

    0.2134    0.3518    0.4348
    0.0096    0.4352    0.5552
         0    0.7128    0.2872
         0    1.0000    0

See Also ewstats, portopt, portstats 
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5fvdiscPurpose Future value of discounted security

Syntax FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

Arguments

Description FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)  finds 
the amount received at maturity for a fully vested security.

Examples Using this data

Settle = '02/15/2001';
Maturity = '05/15/2001';
Price = 100;
Discount = 0.0575;
Basis = 2;

FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

returns

FutureVal =
            101.44

See Also acrudisc, discrate, prdisc, ylddisc

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.

Settle Settlement date. Enter as serial date number or date string. 
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.

Price Price (present value) of the security.

Discount Bank discount rate of the security. Enter as decimal fraction.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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5fvfixPurpose Future value with fixed periodic payments

Syntax FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due)

Arguments

Description FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due)  
returns the future value of a series of equal payments.

Examples A savings account has a starting balance of $1500. $200 is added at the end of 
each month for 10 years and the account pays 9% interest compounded 
monthly. Using this data

FutureVal = fvfix(0.09/12, 12*10, 200, 1500, 0)

returns

FutureVal =
            42379.89

See Also fvvar, pvfix, pvvar

Rate Periodic interest rate, as a decimal fraction.

NumPeriods Number of periods.

Payment Periodic payment.

PresentVal (Optional) Initial value. Default = 0.

Due (Optional) When payments are due or made: 0 = end of 
period (default), or 1 = beginning of period.
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5fvvarPurpose Future value of varying cash flow

Syntax FutureVal = fvvar(CashFlow, Rate, IrrCFDates)

Arguments

Description FutureVal = fvvar(CashFlow, Rate, IrrCFDates)  returns the future value 
of a varying cash flow.

Examples This cash flow represents the yearly income from an initial investment of 
$10,000.  The annual interest rate is 8%.

For the future value of this regular (periodic) cash flow

FutureVal = fvvar([−10000 2000 1500 3000 3800 5000], 0.08)

returns

FutureVal =

            2520.47

CashFlow A vector of varying cash flows. Include the initial investment as 
the initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.

IrrCFDates (Optional) For irregular (nonperiodic) cash flows, a vector of 
dates on which the cash flows occur. Enter dates as serial date 
numbers or date strings. Default assumes CashFlow contains 
regular (periodic) cash flows.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000
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An investment of $10,000 returns this irregular cash flow.  The original 
investment and its date are included.  The periodic interest rate is 9%.

To calculate the future value of this irregular (nonperiodic) cash flow

CashFlow = [−10000, 2500, 2000, 3000, 4000];

IrrCFDates = ['01/12/2000'
              '02/14/2001'
              '03/03/2001'
              '06/14/2001'
              '12/01/2001'];

FutureVal = fvvar(CashFlow, 0.09, IrrCFDates)

returns

FutureVal =

            170.66

See Also fvfix, irr, payuni, pvfix, pvvar

Cash flow Dates

($10000) January 12, 2000

   $2500 February 14, 2001

   $2000 March 3, 2001

   $3000 June 14, 2001

   $4000 December 1, 2001
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5fwd2zeroPurpose Zero curve given a forward curve

Syntax [ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates, 
Settle, Compounding, Basis)

Arguments ForwardRates A number of bonds (NUMBONDS) by 1 vector of annualized 
implied forward rates, as decimal fractions. In 
aggregate, the rates in ForwardRates constitute an 
implied forward curve for the investment horizon 
represented by CurveDates. The first element pertains 
to forward rates from the settlement date to the first 
curve date.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date 
numbers) that correspond to the forward rates. 

Settle A serial date number that is the common settlement 
date for the forward rates.

Compounding (Optional) Output compounding. A scalar that sets the 
compounding frequency per year for annualizing the 
output zero rates. Allowed values are:

1 annual compounding

2 semiannual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

Basis (Optional) Output day-count basis for annualizing the 
output zero rates. 0 = actual/actual (default), 1 = 30/360 
(SIA), 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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Description [ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates, 
Settle, Compounding, Basis) returns a zero curve given an implied forward 
rate curve and its maturity dates.

Examples Given an implied forward rate curve over a set of maturity dates, a settlement 
date, and a compounding rate, compute the zero curve.

ForwardRates = [0.0469
                0.0519
                0.0549
                0.0535
                0.0558
                0.0508
                0.0560
                0.0545
                0.0615
                0.0486];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
Compounding = 1;

Execute the function

ZeroRates A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the 
rates in ZeroRates constitute a zero curve for the investment 
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date 
numbers) that correspond to the zero rates in ZeroRates. This 
vector is the same as the input vector CurveDates.
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[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,... 
Settle, Compounding)

which returns the zero curve ZeroRates at the maturity dates CurveDates.

ZeroRates =

    0.0469
    0.0515
    0.0531
    0.0532
    0.0538
    0.0532
    0.0536
    0.0539
    0.0556
    0.0543

CurveDates =

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

For readability, ForwardRates and ZeroRates are shown here only to the basis 
point. However, MATLAB computed them at full precision. If you enter 
ForwardRates as shown, ZeroRates may differ due to rounding.

See Also zero2fwd and other functions for Term Structure of Interest Rates
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5highlowPurpose High, low, open, close chart

Syntax highlow(High, Low, Close, Open, Color)
Handles = highlow(High, Low, Close, Open, Color)

Arguments

Description highlow(High, Low, Close, Open, Color)  plots the high, low, opening, and 
closing prices of an asset. Plots are vertical lines whose top is the high, bottom 
is the low, open is a short horizontal tick to the left, and close is a short 
horizontal tick to the right.

Handles = highlow(High, Low, Close, Open, Color)  plots the figure and 
returns the handles of the lines. 

Examples The high, low, and closing prices for an asset are stored in equal-length vectors 
AssetHi, AssetLo, and AssetCl respectively

highlow(AssetHi, AssetLo, AssetCl, [], 'cyan')

plots the price data using cyan lines.

See Also bolling, candle, dateaxis, movavg, pointfig

High High prices for a security. A column vector.

Low Low prices for a security. A column vector.

Close Closing prices for a security. A column vector.

Open (Optional) Opening prices for a security. A column vector. To 
specify Color when Open is unknown, enter Open as an empty 
matrix [].

Color (Optional) Vertical line color. A string. MATLAB supplies a 
default color if none is specified. The default color differs 
depending on the background color of the figure window. See 
ColorSpec in the MATLAB documentation for color names.
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5holidaysPurpose Holidays and nontrading days

Syntax Holidays = holidays(StartDate, EndDate)

Arguments

Description Holidays = holidays(StartDate, EndDate) returns a vector of serial date 
numbers corresponding to the holidays and nontrading days between 
StartDate and EndDate, inclusive. 

Holidays = holidays  returns a vector of serial date numbers corresponding 
to all holidays and nontrading days.

As shipped, this function contains all holidays and special nontrading days for 
the New York Stock Exchange between 1950 and 2050. You can edit the 
holidays.m file to contain your own holidays and nontrading days. By 
definition, holidays and nontrading days are those that occur on weekdays.

Examples Holidays = holidays('jan 1 2001', 'jun 23 2001') 

returns
Holidays =

      730852
      730901
      730954
      730999

which are the serial date numbers for

01-Jan-2001 (New Year's Day)
19-Feb-2001 (President’s Day)
13-Apr-2001 (Good Friday)
28-May-2001 (Memorial Day)

See Also busdate, fbusdate, isbusday, lbusdate

StartDate Start date vector. Enter as serial date numbers or date strings.

EndDate End date vector. Enter as serial date numbers or date strings.
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5hourPurpose Hour of date or time

Syntax Hour = hour(Date)

Description Hour = hour(Date)  returns the hour of the day given a serial date number or 
a date string.

Examples Hour = hour(730473.5584278936)

or

Hour = hour('19-dec-1999, 13:24:08.17')

returns

Hour =
       13

See Also datevec, minute, second
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5irrPurpose Internal rate of return

Syntax Return = irr(CashFlow)

Description Return = irr(CashFlow)  calculates the internal rate of return for a series of 
periodic cash flows. CashFlow is the cash flow vector. The first entry in 
CashFlow is the initial investment. If the initial investment is negative, irr 
generates a unique result only if all subsequent cash flows are positive. If some 
future cash flows are negative, irr generates nonunique solutions (multiple 
solutions that are each valid).

If the cash flow payments are monthly, multiply the resulting rate of return by 
12 for the annual rate of return. This function calculates only positive rates of 
return; for nonpositive rates of return, Return = NaN.

Examples This cash flow represents the yearly income from an initial investment of 
$100,000:

To calculate the internal rate of return on the investment

Return = irr([−100000  10000  20000  30000  40000  50000])

returns

Return =

         0.1201 (12.01%)

See Also effrr, mirr, nomrr, taxedrr, xirr

References Brealey and Myers, Principles of Corporate Finance, Chapter 5

Year 1 $10,000

Year 2 $20,000

Year 3 $30,000

Year 4 $40,000

Year 5 $50,000
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5isbusdayPurpose True for dates that are business days

Syntax Busday = isbusday(Date, Holiday, Weekend)

Arguments

Description Busday = isbusday(Date, Holiday, Weekend) returns logical true (1) if Date 
is a business day and logical false (0) otherwise.

Examples Example 1:

Busday = isbusday('16 jun 2001')

Busday =

         0

Date = ['15 feb 2001'; '16 feb 2001'; '17 feb 2001'];

Busday = isbusday(Date)

Busday =

         1
         1
         0

Date Date(s) being checked. Enter as a serial date number or date 
string. Date can contain multiple dates, but they must all be in the 
same format.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates 
in Holiday must be the same format: either serial date numbers or 
date strings. (Using date numbers improves performance.) The 
holidays function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the value 1 
indicating weekend days. The first element of this vector 
corresponds to Sunday. Thus, when Saturday and Sunday form the 
weekend (default), then Weekend = [1 0 0 0 0 0 1]. 
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Example 2: Set June 21, 2003 (a Saturday) as a business day.

Weekend = [1 0 0 0 0 0 0];

isbusday('June 21, 2003', [], Weekend)

ans =

     1

See Also busdate, fbusdate, holidays, lbusdate
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5lbusdatePurpose Last business date of month

Syntax Date = lbusdate(Year, Month, Holiday, Weekend)

Arguments

Description Date = lbusdate(Year, Month, Holiday, Weekend) returns the serial date 
number for the last business date of the given year and month. Holiday 
specifies nontrading days.

Year and Month can contain multiple values. If one contains multiple values, 
the other must contain the same number of values or a single value that applies 
to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 
1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date 
numbers.

Use the function datestr to convert serial date numbers to formatted date 
strings.

Examples Example 1.

Date = lbusdate(2001, 5)

Date =

      731002

datestr(Date)

Year Enter as four-digit integer.

Month Enter as integer from 1 to 12.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates 
in Holiday must be the same format: either serial date numbers or 
date strings. (Using date numbers improves performance.) The 
holidays function supplies the default vector.

Weekend (Optional) Vector of length 7, containing 0 and 1, the value 1 
indicating weekend days. The first element of this vector 
corresponds to Sunday. Thus, when Saturday and Sunday form the 
weekend (default), then Weekend = [1 0 0 0 0 0 1]. 
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ans =

31-May-2001

c
ans =

31-May-2001
31-May-2002
30-May-2003

Example 2: You can indicate that Saturday is a business day by appropriately 
setting the Weekend argument.

Weekend = [1 0 0 0 0 0 0];

May 31, 2003, is a Saturday. Use lbusdate to check that this Saturday is 
actually the last business day of the month.

Date = datestr(lbusdate(2003, 5, [], Weekend))

Date =

31-May-2003

See Also busdate, eomdate, fbusdate, holidays, isbusday
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5lweekdatePurpose Date of last occurrence of weekday in month

Syntax LastDate = lweekdate(Weekday, Year, Month, NextDay)

Arguments

Any input can contain multiple values, but if so, all other inputs must contain 
the same number of values or a single value that applies to all. For example, if 
Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of 
integers or a single integer. LastDate is then a 1-by-n vector of date numbers.

Description LastDate = lweekdate(Weekday, Year, Month, NextDay) returns the serial 
date number for the last occurrence of Weekday in the given year and month 
and in a week that also contains NextDay.

Use the function datestr to convert serial date numbers to formatted date 
strings.

Weekday Weekday whose date you seek. Enter as an integer from 1 
through 7: 

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Year Year. Enter as a four-digit integer.

Month Month. Enter as an integer from 1 through 12.

NextDay (Optional) Weekday that must occur after Weekday in the same 
week. Enter as an integer from 0 through 7, where 0 = ignore 
(default) and 1 through 7 are as for Weekday.
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Examples To find the last Monday in June 2001

LastDate = lweekdate(2, 2001, 6); datestr(LastDate)

ans =

25-Jun-2001

To find the last Monday in a week that also contains a Friday in June 2001

LastDate = lweekdate(2, 2001, 6, 6); datestr(LastDate)

ans =

25-Jun-2001

To find the last Monday in May for 2001, 2002, and 2003

Year = [2001:2003];

LastDate = lweekdate(2, Year, 5)

LastDate =

           730999      731363      731727
datestr(LastDate)

ans =

28-May-2001
27-May-2002
26-May-2003

See Also eomdate, lbusdate, nweekdate
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5m2xdatePurpose MATLAB serial date number to Excel serial date number

Syntax DateNum = m2xdate(MATLABDateNumber, Convention)

Arguments

Vector arguments must have consistent dimensions.

Description DateNum = m2xdate(MATLABDateNumber, Convention) converts MATLAB 
serial date numbers to Excel serial date numbers. MATLAB date numbers 
start with 1 = January 1, 0000 A.D., hence there is a difference of 693961 
relative to the 1900 date system, or 695422 relative to the 1904 date system. 
This function is useful with MATLAB Excel Link.

Examples Given MATLAB date numbers for Christmas 2001 through 2004

DateNum = datenum(2001:2004, 12, 25)

DateNum =

      731210      731575      731940      732306

convert them to Excel date numbers in the 1904 system

ExDate = m2xdate(DateNum, 1)

ExDate =

       35788       36153       36518       36884

or the 1900 system

MATLABDateNumber A vector or scalar of MATLAB serial date numbers.

Convention (Optional) Excel date system. A vector or scalar. When 
Convention = 0 (default), the Excel 1900 date system is 
in effect. When Convention = 1, the Excel 1904 date 
system in used. 

In the Excel 1900 date system, the Excel serial date 
number 1 corresponds to January 1, 1900 A.D. In the 
Excel 1904 date system, date number 0 is January 1, 
1904 A.D.
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ExDate = m2xdate(DateNum)

ExDate =

       37250       37615       37980       38346

See Also datenum, datestr, x2mdate
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minute
5minutePurpose Minute of date or time

Syntax Minute = minute(Date)

Description Minute = minute(Date)  returns the minute given a serial date number or a 
date string.

Examples Minute = minute(731204.5591223380) 

or

Minute = minute('19-dec-2001, 13:25:08.17')

returns

 Minute =

    25

See Also datevec, hour, second
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5mirrPurpose Modified internal rate of return

Syntax Return = mirr(CashFlow, FinRate, Reinvest)

Arguments

Description Return = mirr(CashFlow, FinRate, Reinvest)  calculates the modified 
internal rate of return for a series of periodic cash flows. This function 
calculates only positive rates of return; for nonpositive rates of return, Return 
= 0.

Examples This cash flow represents the yearly income from an initial investment of 
$100,000.  The finance rate is 9% and the reinvestment rate is 12%.

To calculate the modified internal rate of return on the investment

Return = mirr([−100000 20000 −10000 30000 38000 50000], 0.09,... 
0.12)

returns

Return =
         0.0832 (8.32%)

See Also annurate, effrr, irr, nomrr, pvvar, xirr

CashFlow Vector of cash flows. The first entry is the initial investment.

FinRate Finance rate for negative cash flow values. Enter as decimal 
fraction.

Reinvest Reinvestment rate for positive cash flow values, as a decimal 
fraction.

Year 1  $20,000

Year 2 ($10,000)

Year 3  $30,000

Year 4  $38,000

Year 5  $50,000
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References Brealey and Myers, Principles of Corporate Finance, Chapter 5
5-213



month
5monthPurpose Month of date

Syntax [MonthNum, MonthString] = month(Date)

Description [MonthNum, MonthString] = month(Date)  returns the month in numeric 
and string form given a serial date number or a date string.

Examples [MonthNum, MonthString] = month(730368) 

or 

[MonthNum, MonthString] = month('05-Sep-1999')

returns

MonthNum =

      9

MonthString =

Sep

See Also datevec, day, year
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5monthsPurpose Number of whole months between dates

Syntax Months = months(StartDate, EndDate, EndMonthFlag)

Arguments

Description Months = months(StartDate, EndDate, EndMonthFlag) returns the number 
of whole months between StartDate and EndDate. If EndDate is earlier than 
StartDate, Months is negative. Enter dates as serial date numbers or date 
strings.

Any input argument can contain multiple values, but if so, all other inputs 
must contain the same number of values or a single value that applies to all. 
For example, if StartDate is an n-row character array of date strings, then 
EndDate must be an n-row character array of date strings or a single date.  
Months is then an n-by-1 vector of numbers.

Examples Months = months('may 31 2000', 'jun 30 2000', 1)
Months =
         1

Months = months('may 31 2000','jun 30 2000', 0)
Months =
         0

Dates = ['mar 31 2002'; 'apr 30 2002'; 'may 31 2002'];
Months = months(Dates, 'jun 30 2002')
Months =
         3
         2
         1

See Also yearfrac

StartDate Enter as serial date numbers or date strings. 

EndDate Enter as serial date numbers or date strings.

EndMonthFlag (Optional) end-of-month flag. If StartDate and EndDate are 
end-of-month dates and EndDate has fewer days than 
StartDate, EndMonthFlag = 1 (default) treats EndDate as the 
end of a whole month, while EndMonthFlag = 0 does not.
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5movavgPurpose Leading and lagging moving averages chart

Syntax movavg(Asset, Lead, Lag, Alpha)
[Short, Long] = movavg(Asset, Lead, Lag, Alpha)

Arguments

Description movavg(Asset, Lead, lag, Alpha)  plots leading and lagging moving 
averages.

[Short, Long] = movavg(Asset, Lead, lag, Alpha)  returns the leading 
Short and lagging Long moving average data without plotting it.

Examples If Asset is a vector of stock price data

movavg(Asset, 3, 20, 1)

plots linear three-sample leading and 20-sample lagging moving averages.

See Also bolling, candle, dateaxis, highlow, pointfig

Asset Security data, usually a vector of time-series prices.

Lead Number of samples to use in leading average calculation. A 
positive integer. Lead must be less than or equal to Lag.

Lag Number of samples to use in the lagging average calculation. A 
positive integer.

Alpha (Optional) Control parameter that determines the type of 
moving averages. 0 = simple moving average (default), 
0.5 = square root weighted moving average, 1 = linear moving 
average, 2 = square weighted moving average, etc. To calculate 
the exponential moving average, set Alpha ='e'.
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5nomrrPurpose Nominal rate of return

Syntax Return = nomrr(Rate, NumPeriods)

Arguments

Description Return = nomrr(Rate, NumPeriods)  calculates the nominal rate of return.

Examples To find the nominal annual rate of return based on an effective annual 
percentage rate of 9.38% compounded monthly

Return = nomrr(0.0938, 12)

returns

Return =
         0.0900 (9.0%)

See Also effrr, irr, mirr, taxedrr, xirr

Rate Effective annual percentage rate. Enter as a decimal fraction.

NumPeriods Number of compounding periods per year, an integer.
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now
5nowPurpose Current date and time

Syntax Datenum = now

Description Datenum = now  returns the current date and time as a serial date number.

Note  This function now ships with basic MATLAB. It originally shipped only 
with the Financial Toolbox. This description remains here for your 
convenience.

Examples Datenum = now

Datenum =

    730695.5942469908 (on July 28, 2000 at 2:15 PM)

See Also date, datenum, today
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5nweekdatePurpose Date of specific occurrence of weekday in month

Syntax Date = nweekdate(n, Weekday, Year, Month, Same)

Arguments

Description Date = nweekdate(n, Weekday, Year, Month, Same) returns the serial date 
number for the specific occurrence of the weekday in the given year and month, 
and in a week that also contains the weekday Same.

If n is larger than the last occurrence of Weekday, Date = 0.

Any input can contain multiple values, but if so, all other inputs must contain 
the same number of values or a single value that applies to all. For example, if 
Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of 
integers or a single integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date 
strings.

n Nth occurrence of the weekday in a month. Enter as integer from 1 
through 5.

Weekday Weekday whose date you seek. Enter as integer from 1 through 7.

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Year Year. Enter as a four-digit integer.

Month Month. Enter as an integer from 1 through 12.

Same (Optional) Weekday that must occur in the same week with 
Weekday. Enter as an integer from 0 through 7, where 0 = ignore 
(default) and 1 through 7 are as for Weekday.
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Examples To find the first Thursday in May 2001

Date = nweekdate(1, 5, 2001, 5); datestr(Date)

ans =

03-May-2001

To find the first Thursday in a week that also contains a Wednesday in May 
2001

Date = nweekdate(2, 5, 2001, 5, 4); datestr(Date)

ans =

10-May-2001

To find the third Monday in February for 2001, 2002, and 2003

Year = [2001:2003];

Date = nweekdate(3, 2, Year, 2)

Date =
       730901      731265      731629

datestr(Date)

ans =

19-Feb-2001
18-Feb-2002
17-Feb-2003

See Also fbusdate, lbusdate, lweekdate
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5opprofitPurpose Option profit

Syntax Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)

Arguments

Description Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)  
returns the profit of an option.

Examples Buying (going long on) a call option with a strike price of $90 on an underlying 
asset with a current price of $100 for a cost of $4

Profit = opprofit(100, 90, 4, 0, 0)

returns

Profit =
          6.00

a profit of $6 if the option is exercised under these conditions.

See Also binprice, blsprice

AssetPrice Asset price.

Strike Strike or exercise price.

Cost Cost of the option.

PosFlag Option position. 0 = long, 1 = short.

OptType Option type. 0 = call option, 1 = put option.
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5payadvPurpose Periodic payment given number of advance payments

Syntax Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue, 
Advance)

Arguments

Description Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue, 
Advance)  returns the periodic payment given a number of advance payments.

Examples The present value of a loan is $1000.00 and it will be paid in full in 12 months. 
The annual interest rate is 10% and three payments are made at closing time. 
Using this data

Payment = payadv(0.1/12, 12, 1000, 0, 3)

returns

Payment =

          85.94

for the periodic payment.

See Also amortize, payodd, payper

Rate Lending or borrowing rate per period. Enter as a decimal 
fraction. Must be greater than or equal to 0.

NumPeriods Number of periods in the life of the instrument.

PresentValue Present value of the instrument.

FutureValue Future value or target value to be attained after NumPeriods 
periods.

Advance Number of advance payments. If the payments are made at 
the beginning of the period, add 1 to Advance.
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5payoddPurpose Payment of loan or annuity with odd first period

Syntax Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)

Arguments

Description Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)  
returns the payment for a loan or annuity with an odd first period.

Examples A two-year loan for $4000 has an annual interest rate of 11%. The first 
payment will be made in 36 days. To find the monthly payment

Payment = payodd(0.11/12, 24, 4000, 0, 36)

returns

Payment =

         186.77

See Also amortize, payadv, payper

rate Interest rate per period. Enter as a decimal fraction.

NumPeriods Number of periods in the life of the instrument.

PresentValue Present value of the instrument.

FutureValue Future value or target value to be attained after NumPeriods 
periods.

Days Actual number of days until the first payment is made.
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5payperPurpose Periodic payment of loan or annuity

Syntax Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)

Arguments

Description Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)  
returns the periodic payment of a loan or annuity.

Examples Find the monthly payment for a three-year loan of $9000 with an annual 
interest rate of 11.75%

Payment = payper(0.1175/12, 36, 9000, 0, 0)

returns

Payment =

         297.86

See Also amortize, fvfix, payadv, payodd, pvfix

Rate Interest rate per period. Enter as a decimal fraction.

NumPeriods Number of payment periods in the life of the instrument.

PresentValue Present value of the instrument.

FutureValue (Optional) Future value or target value to be attained after 
NumPeriods periods. Default = 0. 

Due (Optional) When payments are due: 0 = end of period (default), 
or 1 = beginning of period.
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5payuniPurpose Uniform payment equal to varying cash flow

Syntax Series = payuni(CashFlow, Rate)

Arguments

Description Series = payuni(CashFlow, Rate)  returns the uniform series value of a 
varying cash flow.

Examples This cash flow represents the yearly income from an initial investment of 
$10,000.  The annual interest rate is 8%.

To calculate the uniform series value

Series = payuni([−10000 2000 1500 3000 3800 5000], 0.08)

returns

Series =

         429.63

See Also fvfix, fvvar, irr, pvfix, pvvar

CashFlow A vector of varying cash flows. Include the initial investment 
as the initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000
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5pcalimsPurpose Linear inequalities for individual asset allocation

Syntax [A,b] = pcalims(AssetMin, AssetMax, NumAssets)

Arguments

Description [A,b] = pcalims(AssetMin, AssetMax, NumAssets) specifies the lower and 
upper bounds of portfolio allocations in each of NumAssets available asset 
investments.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 
1-by-NASSETS vector of asset allocations.

If pcalims is called with fewer than two output arguments, the function 
returns A concatenated with b [A,b].

Examples Set the minimum weight in every asset to 0 (no short-selling), and set the 
maximum weight of IBM to 0.5 and CSCO to 0.8, while letting the maximum 
weight in INTC float.

AssetMin Scalar or NASSETS vector of minimum allocations in each 
asset. NaN indicates no constraint.

AssetMax Scalar or NASSETS vector of maximum allocations in each 
asset. NaN indicates no constraint.

NumAssets (Optional) Number of assets. Default = length of AssetMin or 
AssetMax.

Asset IBM INTC CSCO

Min. Wt. 0 0 0

Max. Wt. 0.5 0.8
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AssetMin = 0
AssetMax = [0.5 NaN 0.8]
[A,b] = pcalims(AssetMin, AssetMax)

A =
     1     0     0
     0     0     1
    -1     0     0
     0    -1     0
     0     0    -1

b =

    0.5000
    0.8000
         0
         0
         0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

Set the minimum weight in every asset to 0 and the maximum weight to 1.

AssetMin = 0
AssetMax = 1
NumAssets = 3

Asset IBM INTC CSCO

Min. Wt. 0 0 0

Max. Wt. 1 1 1
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[A,b] = pcalims(AssetMin, AssetMax, NumAssets)

A =

     1     0     0
     0     1     0
     0     0     1
    -1     0     0
     0    -1     0
     0     0    -1

b =
    1
    1
    1
    0
    0
    0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

See Also pcgcomp, pcglims, pcpval, portcons, portopt
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5pcgcompPurpose Linear inequalities for asset group comparison constraints

Syntax [A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

Arguments

Description [A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB) specifies that the 
ratio of allocations in one group to allocations in another group is at least 
AtoBmin to 1 and at most AtoBmax to 1. Comparisons can be made between an 
arbitrary number of group pairs NGROUPS comprising subsets of NASSETS 
available investments.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 
1-by-NASSETS vector of asset allocations.

If pcgcomp is called with fewer than two output arguments, the function 
returns A concatenated with b [A,b].

Examples  

GroupA
GroupB

Number of groups (NGROUPS) by number of assets (NASSETS) 
specifications of groups to compare. Each row specifies a group. 
For a specific group, Group(i,j) = 1 if the group contains 
asset j; otherwise, Group(i,j) = 0. 

AtoBmin
AtoBmax

Scalar or NGROUPS-long vectors of minimum and maximum 
ratios of allocations in GroupA to allocations in GroupB. NaN 
indicates no constraint between the two groups. Scalar bounds 
are applied to all group pairs. The total number of assets 
allocated to GroupA divided by the total number of assets 
allocated to GroupB is >= AtoBmin and <= AtoBmax.

Asset INTC XOM RD

Region North America North America Europe

Sector Technology Energy Energy
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Make the North American energy sector compose exactly 20% of the North 
American investment.

%          INTC  XOM  RD       
GroupA = [   0    1   0  ];  % North American Energy
GroupB = [   1    1   0  ];  % North America

AtoBmin = 0.20;
AtoBmax = 0.20;

[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

A =

    0.2000    -0.8000     0
   -0.2000     0.8000     0

b =

   0
   0

Portfolio weights of 40% for INTC, 10% for XOM, and 50% for RD satisfy the 
constraints.

See Also pcalims, pcglims, pcpval, portcons, portopt

Group Min. Exposure Max. Exposure

North America 0.30 0.75

Europe 0.10 0.55

Technology 0.20 0.50

Energy 0.20 0.80
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5pcglimsPurpose Linear inequalities for asset group minimum and maximum allocation

Syntax [A,b] = pcglims(Groups, GroupMin, GroupMax)

Arguments

Description [A,b] = pcglims(Groups, GroupMin, GroupMax) specifies minimum and 
maximum allocations to groups of assets. An arbitrary number of groups, 
NGROUPS, comprising subsets of NASSETS investments, is allowed.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 
1-by-NASSETS vector of asset allocations.

If pcglims is called with fewer than two output arguments, the function 
returns A concatenated with b [A,b].

Examples  

Groups Number of groups (NGROUPS) by number of assets (NASSETS) 
specification of which assets belong to which group. Each row 
specifies a group. For a specific group, Group(i,j) = 1 if the 
group contains asset j; otherwise, Group(i,j) = 0. 

GroupMin
GroupMax

Scalar or NGROUPS-long vectors of minimum and maximum 
combined allocations in each group. NaN indicates no constraint. 
Scalar bounds are applied to all groups. 

Asset INTC XOM RD

Region North America North America Europe

Sector Technology Energy Energy

Group Min. Exposure Max. Exposure

North America 0.30 0.75

Europe 0.10 0.55

Technology 0.20 0.50

Energy 0.50 0.50
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Set the minimum and maximum investment in various groups.

%          INTC  XOM  RD       
Groups = [   1    1   0  ;  % North America
             0    0   1  ;  % Europe
             1    0   0  ;  % Technology
             0    1   1  ]; % Energy

GroupMin = [0.30
            0.10
            0.20
            0.50];

GroupMax = [0.75
            0.55
            0.50
            0.50];

[A,b] = pcglims(Groups, GroupMin, GroupMax)

A =

    -1    -1     0
     0     0    -1
    -1     0     0
     0    -1    -1
     1     1     0
     0     0     1
     1     0     0
     0     1     1
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b =

   -0.3000
   -0.1000
   -0.2000
   -0.5000
    0.7500
    0.5500
    0.5000
    0.5000

Portfolio weights of 50% in INTC, 25% in XOM, and 25% in RD satisfy the 
constraints.

 See Also pcalims, pcgcomp, pcpval, portcons, portopt
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5pcpvalPurpose Linear inequalities for fixing total portfolio value

Syntax [A,b] = pcpval(PortValue, NumAssets)

Arguments

Description [A,b] = pcpval(PortValue, NumAssets) scales the total value of a portfolio 
of NumAssets assets to PortValue. All portfolio weights, bounds, return, and 
risk values except ExpReturn and ExpCovariance (see portopt) are in terms of 
PortValue.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 
1-by-NASSETS vector of asset allocations. 

If pcpval is called with fewer than two output arguments, the function returns 
A concatenated with b [A,b]. 

Examples  Scale the value of a portfolio of three assets to 1, so all return values are rates 
and all weight values are in fractions of the portfolio.

PortValue = 1;
NumAssets = 3;

[A,b] = pcpval(PortValue, NumAssets)

A =

     1     1     1
    -1    -1    -1

b =

    1
   -1

PortValue Scalar total value of asset portfolio (sum of the allocations in 
all assets). PortValue = 1 specifies weights as fractions of 
the portfolio and return and risk numbers as rates instead of 
value. 

NumAssets Number of available asset investments.
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Portfolio weights of 40%, 10%, and 50% in the three assets satisfy the 
constraints.

See Also pcalims, pcgcomp, pcglims, portcons, portopt
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5pointfigPurpose Point and figure chart

Syntax pointfig(Asset)

Description pointfig(Asset)  plots a point and figure chart for a vector of price data 
Asset. Upward price movements are plotted as X’s and downward price 
movements are plotted as O’s.

See Also bolling, candle, dateaxis, highlow, movavg
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5portallocPurpose Optimal capital allocation to efficient frontier portfolios

Syntax [RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk, 
OverallReturn] = portalloc(PortRisk, PortReturn, PortWts, 
RisklessRate, BorrowRate, RiskAversion)

Arguments

Description [RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk, 
OverallReturn] = portalloc(PortRisk, PortReturn, PortWts, 
RisklessRate, BorrowRate, RiskAversion) computes the optimal risky 
portfolio, and the optimal allocation of funds between the risky portfolio and 
the risk-free asset.

RiskyRisk is the standard deviation of the optimal risky portfolio.

RiskyReturn is the expected return of the optimal risky portfolio.

RiskyWts is a 1-by-NASSETS vector of weights allocated to the optimal risky 
portfolio. The total of all weights in the portfolio is 1.

RiskyFraction is the fraction of the complete portfolio allocated to the risky 
portfolio.

OverallRisk is the standard deviation of the optimal overall portfolio.

PortRisk Standard deviation of each risky asset efficient frontier 
portfolio. A number of portfolios (NPORTS) by 1 vector.

PortReturn Expected return of each risky asset efficient frontier 
portfolio. An NPORTS-by-1 vector.

PortWts Weights allocated to each asset. An NPORTS by number of 
assets (NASSETS) matrix of weights allocated to each asset. 
Each row represents an efficient frontier portfolio of risky 
assets. Total of all weights in a portfolio is 1.

RisklessRate Risk-free lending rate. A decimal number.

BorrowRate (Optional) Borrowing rate. A decimal number. If borrowing 
is not desired, or not an option, set to NaN (default).

RiskAversion (Optional) Coefficient of investor's degree of risk aversion. 
Higher numbers indicate greater risk aversion. Typical   
coefficients range between 2.0 and 4.0 (Default = 3). 
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OverallReturn is the expected rate of return of the optimal overall portfolio.

portalloc generates a plot of the optimal capital allocation if you invoke it 
without output arguments.

Examples Generate the efficient frontier from the asset data.

ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance = [0.005   -0.010    0.004 
-0.010    0.040   -0.002 
0.004   -0.002    0.023];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... 
ExpCovariance);

Find the optimal risky portfolio and allocate capital. The risk free investment 
return is 8%, and the borrowing rate is 12%.

RisklessRate  = 0.08;
BorrowRate    = 0.12;
RiskAversion  = 3;

[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, ... 
OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn,... 
PortWts, RisklessRate, BorrowRate, RiskAversion)

RiskyRisk =

    0.1283

RiskyReturn =

    0.1788

RiskyWts =

    0.0265    0.6023    0.3712

RiskyFraction =

    1.1898
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OverallRisk =

    0.1527

OverallReturn =

    0.1899

See Also frontcon, portrand, portstats

 References Bodie, Kane, and Marcus, Investments, Second Edition, Chapters 6 and 7.
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5portconsPurpose Portfolio constraints

Syntax ConSet = portcons(varargin)

Description Using linear inequalities, portcons generates a matrix of constraints for a 
portfolio of asset investments. The matrix ConSet is defined as 
ConSet = [A b]. A is a matrix and b a vector such that A*PortWts' <= b sets 
the value, where PortWts is a 1 by number of assets (NASSETS) vector of asset 
allocations.

ConSet = portcons('ConstType', Data1, ..., DataN) creates a matrix 
ConSet, based on the constraint type ConstType, and the constraint 
parameters Data1, ..., DataN. 

ConSet = portcons('ConstType1', Data11, ..., Data1N,'ConstType2', 
Data21, ..., Data2N, ...) creates a matrix ConSet, based on the constraint 
types ConstTypeN, and the corresponding constraint parameters DataN1, ..., 
DataNN. 

Constraint Type Description Values

Default All allocations are 
>= 0; no short selling 
allowed. Combined 
value of portfolio 
allocations normalized 
to 1.

NumAssets (required). 
Scalar representing 
number of assets in 
portfolio.

PortValue Fix total value of 
portfolio to PVal.

PVal (required). Scalar 
representing total value of 
portfolio. 

NumAssets (required). 
Scalar representing 
number of assets in 
portfolio. See pcpval.
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AssetLims Minimum and 
maximum allocation 
per asset.

AssetMin (required). Scalar 
or vector of length NASSETS, 
specifying minimum 
allocation per asset.

AssetMax (required). Scalar 
or vector of length NASSETS, 
specifying maximum 
allocation per asset.

NumAssets (optional). See 
pcalims.      

GroupLims Minimum and 
maximum allocations 
to asset group.

Groups (required). 
NGROUPS-by-NASSETS matrix 
specifying which assets 
belong to each group.

GroupMin (required). Scalar 
or a vector of length 
NGROUPS, specifying 
minimum combined 
allocations in each group.

GroupMax (required). Scalar 
or a vector of length 
NGROUPS, specifying 
maximum combined 
allocations in each group.

 See pcglims.    

Constraint Type Description Values
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GroupComparison Group-to-group 
comparison 
constraints.

GroupA (required). 
NGROUPS-by-NASSETS matrix 
specifying first group in the 
comparison.

AtoBmin (required). Scalar 
or vector of length NGROUPS 
specifying minimum ratios 
of allocations in GroupA to 
allocations in GroupB.

AtoBmax (required).     
Scalar or vector of length 
NGROUPS specifying 
maximum ratios of 
allocations in GroupA to 
allocations in GroupB.

GroupB (required). 
NGROUPS-by-NASSETS matrix 
specifying second group in 
the comparison.

See pcgcomp .

Custom Custom linear 
inequality constraints 
A*PortWts' <= b.

A (required). 
NCONSTRAINTS-by-NASSETS 
matrix, specifying weights 
for each asset in each 
inequality equation. 

b (required). Vector of 
length NCONSTRAINTS 
specifying the right hand 
sides of the inequalities.

Constraint Type Description Values
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Examples Constrain a portfolio of three assets:

NumAssets = 3;
PVal = 1; % Scale portfolio value to 1.
AssetMin = 0;
AssetMax = [0.5 0.9 0.8];
GroupA = [1 1 0];
GroupB = [0 0 1];
AtoBmax = 1.5 % Value of assets in Group A at most 1.5 times value 

% in group B.

ConSet = portcons('PortValue', PVal, NumAssets,'AssetLims',... 
AssetMin, AssetMax, NumAssets, 'GroupComparison',GroupA, NaN,... 
AtoBmax, GroupB)  

ConSet =

    1.0000    1.0000    1.0000    1.0000
   -1.0000   -1.0000   -1.0000   -1.0000
    1.0000         0         0    0.5000
         0    1.0000         0    0.9000
         0         0    1.0000    0.8000
   -1.0000         0         0         0
         0   -1.0000         0         0
         0         0   -1.0000         0
    1.0000    1.0000   -1.5000         0

Portfolio weights of 30% in IBM, 30% in HPQ, and 40% in XOM satisfy the 
constraints.

See Also pcalims, pcgcomp, pcglims, pcpval, portopt

Asset IBM HPQ XOM

Group A A B

Min. Wt. 0 0 0

Max. Wt. 0.5 0.9 0.8
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5portopt Purpose Portfolios on constrained efficient frontier

Syntax [PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,    
NumPorts, PortReturn, ConSet)

Arguments

Description [PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,    
NumPorts, PortReturn, ConSet) returns the mean-variance efficient   
frontier with user-specified covariance, returns, and asset constraints    
(ConSet). Given a collection of NASSETS risky assets, computes a portfolio of 
asset investment weights that minimize the risk for given values of the     
expected return. The portfolio risk is minimized subject to constraints on the 
total portfolio value, the individual asset minimum and maximum allocation, 
the asset group minimum and maximum allocation, or the asset     
group-to-group comparison.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. 
Each row represents a portfolio. The total of all weights in a portfolio is 1.

ExpReturn 1 by number of assets (NASSETS) vector specifying the 
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of 
the asset returns.

NumPorts (Optional) Number of portfolios generated along the 
efficient frontier. Returns are equally spaced between 
the maximum possible return and the minimum risk 
point. If NumPorts is empty (entered as []), computes 10 
equally spaced points. 

PortReturn (Optional) Expected return of each portfolio. A number of 
portfolios (NPORTS) by 1 vector. If not entered or empty, 
NumPorts equally spaced returns between the minimum 
and maximum possible values are used.

ConSet (Optional) Constraint matrix for a portfolio of asset 
investments, created using portcons. If not specified, a 
default is created.
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If portopt is invoked without output arguments, it returns a plot of the 
efficient frontier.

 Examples Plot the risk-return efficient frontier of portfolios allocated among three assets. 
Connect 20 portfolios along the frontier having evenly spaced returns. By 
default, choose among portfolios without short-selling and scale the value of 
the portfolio to 1.

ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance = [0.005   -0.010    0.004 
-0.010    0.040   -0.002 
0.004   -0.002    0.023];

 
NumPorts = 20;
portopt(ExpReturn, ExpCovariance, NumPorts)

Return the two efficient portfolios that have returns of 16% and 17%. Limit to 
portfolios that have at least 20% of the allocation in the first asset, and cap the 
total value in the first and third assets at 50% of the portfolio.
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ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance = [0.005   -0.010    0.004 
-0.010    0.040   -0.002 
0.004   -0.002    0.023];

PortReturn = [0.16 
              0.17];

NumAssets = 3;

AssetMin = [0.20 NaN NaN]; 

Group    = [1    0   1];

GroupMax = 0.50;

ConSet = portcons('Default', NumAssets, 'AssetLims', AssetMin,... 
NaN,'GroupLims', Group, NaN, GroupMax);

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,... 
ExpCovariance, [], PortReturn, ConSet)

PortRisk =

    0.0919
    0.1138

PortReturn =

    0.1600
    0.1700
    
PortWts =

    0.3000    0.5000    0.2000
    0.2000    0.6000    0.2000

See Also ewstats, frontcon, portcons, portstats
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5portrandPurpose Randomized portfolio risks, returns, and weights

Syntax [PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points)
portrand(Asset, Return, Points)

Arguments

Description [PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points)  
returns the risks, rates of return, and weights of random portfolio 
configurations.

portrand(Asset, Return, Points)  plots the points representing each 
portfolio configuration. It does not return any data to the MATLAB workspace.

See Also frontcon

References Bodie, Kane, and Marcus, Investments, Chapter 7.

Asset Matrix of time series data. Each row is an observation and 
each column represents a single security.

Return (Optional) Row vector where each column represents the rate 
of return for the corresponding security in Asset. By default, 
Return is computed by taking the average value of each 
column of Asset.

Points (Optional) Scalar that specifies how many random points 
should be generated. Default = 1000.

PortRisk Points-by-1 vector of standard deviations.

PortReturn Points-by-1 vector of expected rates of return.

PortWts Points by number of securities matrix of asset weights. Each 
row of PortWts is a different portfolio configuration.
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5portsimPurpose Monte Carlo simulation of correlated asset returns

Syntax RetSeries = portsim(ExpReturn, ExpCovariance, NumObs, RetIntervals, 
NumSim, Method)

Arguments ExpReturn 1 by number of assets (NASSETS) vector specifying the 
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix of asset return covariances. 
ExpCovariance must be symmetric and positive 
semidefinite (no negative eigenvalues). The standard 
deviations of the returns are: 
ExpSigma = sqrt(diag(ExpCovariance)).

NumObs Positive scalar integer indicating the number of 
consecutive observations in the return time series. If 
NumObs is entered as the empty matrix [], the length of 
RetIntervals is used. 

RetIntervals (Optional) Positive scalar or number of observations 
(NUMOBS) by 1 vector of interval times between 
observations. If RetIntervals is not specified, all 
intervals are assumed to have length 1.

NumSim (Optional) Positive scalar integer indicating the number of 
simulated sample paths (realizations) of NUMOBS 
observations. Default = 1 (single realization of NUMOBS 
correlated asset returns).
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Description portsim simulates correlated returns of NASSETS assets over NUMOBS 
consecutive observation intervals. Asset returns are simulated as the 
proportional increments of constant drift, constant volatility stochastic 
processes, thereby approximating continuous-time geometric Brownian 
motion.

RetSeries is a NUMOBS-by-NASSETS-by-NUMSIM three-dimensional array of 
correlated, normally distributed, proportional asset returns. Asset returns over 
an interval of length  are given by

where is the asset price, is the expected rate of return,  is the volatility of 
the asset price, and  represents a random drawing from a standardized 
normal distribution.

Notes   1. When Method is 'Exact', the sample mean and covariance of all 
realizations (scaled by RetIntervals) match the input mean and covariance. 
When the returns are subsequently converted to asset prices, all terminal 
prices for a given asset are in close agreement. Although all realizations are 
drawn independently, they produce similar terminal asset prices. Set Method 

Method (Optional) String indicating the type of Monte Carlo 
simulation:

'Exact' (default) generates correlated asset returns in 
which the sample mean and covariance match the input 
mean (ExpReturn) and covariance (ExpCovariance) 
specifications.

'Expected' generates correlated asset returns in which 
the sample mean and covariance are statistically equal to 
the input mean and covariance specifications. (The 
expected value of the sample mean and covariance are 
equal to the input mean (ExpReturn) and covariance 
(ExpCovariance) specifications.) 

For either method the sample mean and covariance 
returned are appropriately scaled by RetIntervals.

dt

dS
S

-------- µdt σdz+ µdt σε dt+= =

S µ σ
ε
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to 'Expected' to avoid this behavior.

2. The returns from the portfolios in PortWts are given by 
PortReturn = PortWts * RetSeries(:,:,1)', where PortWts is a matrix in 
which each row contains the asset allocations of a portfolio. Each row of 
PortReturn corresponds to one of the portfolios identified in PortWts, and 
each column corresponds to one of the observations taken from the first 
realization (the first plane) in RetSeries. See portopt and portstats for 
portfolio specification and optimization.

Examples Example 1. Distinction Between Simulation Methods

This example highlights the distinction between the Exact and Expected 
methods of simulation. 

Consider a portfolio of five assets with the following expected returns, standard 
deviations, and correlation matrix based on daily asset returns.

ExpReturn     = [0.0246  0.0189  0.0273  0.0141  0.0311]/100;
Sigmas        = [0.9509  1.4259  1.5227  1.1062  1.0877]/100;
Correlations  = [1.0000  0.4403  0.4735  0.4334  0.6855
                 0.4403  1.0000  0.7597  0.7809  0.4343
                 0.4735  0.7597  1.0000  0.6978  0.4926
                 0.4334  0.7809  0.6978  1.0000  0.4289
                 0.6855  0.4343  0.4926  0.4289  1.0000];

Convert the correlations and standard deviations to a covariance matrix.

ExpCovariance = corr2cov(Sigmas, Correlations);

ExpCovariance =

  1.0e-003 *

    0.0904    0.0597    0.0686    0.0456    0.0709
    0.0597    0.2033    0.1649    0.1232    0.0674
    0.0686    0.1649    0.2319    0.1175    0.0816
    0.0456    0.1232    0.1175    0.1224    0.0516
    0.0709    0.0674    0.0816    0.0516    0.1183
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Assume that there are 252 trading days in a calendar year, and simulate two 
sample paths (realizations) of daily returns over a two-year period. Since 
ExpReturn and ExpCovariance are expressed on a daily basis, set 
RetIntervals = 1.

StartPrice    = 100;
NumObs        = 504; % two calendar years of daily returns
NumSim        = 2;
RetIntervals  = 1; % one trading day
NumAssets     = 5;

To illustrate the distinction between methods, simulate two paths by each 
method, starting with the same random number state.

randn('state',0); 
RetExact = portsim(ExpReturn, ExpCovariance, NumObs, ... 
RetIntervals, NumSim, 'Exact');
randn('state',0); 
RetExpected = portsim(ExpReturn, ExpCovariance, NumObs, ... 
RetIntervals, NumSim, 'Expected');

If you compare the mean and covariance of RetExact with the inputs 
(ExpReturn and ExpCovariance), you will observe that they are almost 
identical.

At this point, RetExact and RetExpected are both 504-by-5-by-2 arrays. Now 
assume an equally-weighted portfolio formed from the five assets and create 
arrays of portfolio returns in which each column represents the portfolio return 
of the corresponding sample path of the simulated returns of the five assets. 
The portfolio arrays PortRetExact and PortRetExpected are 504-by-2 
matrices. 

Weights         = ones(NumAssets, 1)/NumAssets;
PortRetExact    = zeros(NumObs, NumSim);
PortRetExpected = zeros(NumObs, NumSim);

for i = 1:NumSim
    PortRetExact(:,i)    = RetExact(:,:,i) * Weights;
    PortRetExpected(:,i) = RetExpected(:,:,i) * Weights; 
end
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Finally, convert the simulated portfolio returns to prices and plot the data. In 
particular, note that since the Exact method matches expected return and 
covariance, the terminal portfolio prices are virtually identical for each sample 
path. This is not true for the Expected simulation method. 

Although this example examines portfolios, the same methods apply to 
individual assets as well. Thus, Exact simulation is most appropriate when 
unique paths are required to reach the same terminal prices.

PortExact   = ret2tick(PortRetExact, ... 
repmat(StartPrice,1,NumSim)); 
PortExpected = ret2tick(PortRetExpected, ... 
repmat(StartPrice,1,NumSim)); 
subplot(2,1,1), plot(PortExact, '-r')
ylabel('Portfolio Prices')
title('Exact Method')
subplot(2,1,2), plot(PortExpected, '-b')
ylabel('Portfolio Prices')
title('Expected Method')
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Example 2. Interaction between ExpReturn, ExpCovariance and RetIntervals

Recall that portsim simulates correlated asset returns over an interval of 
length , given by the equation

where is the asset price, is the expected rate of return,  is the volatility of 
the asset price, and  represents a random drawing from a standardized 
normal distribution.

The time increment  is determined by the optional input RetIntervals, 
either as an explicit input argument or as a unit time increment by default. 
Regardless, the periodicity of ExpReturn, ExpCovariance and RetIntervals 
must be consistent. For example, if ExpReturn and ExpCovariance are 
annualized, then RetIntervals must be in years. This point is often 
misunderstood.

To illustrate the interplay among ExpReturn, ExpCovariance, and 
RetIntervals, consider a portfolio of five assets with the following expected 
returns, standard deviations, and correlation matrix based on daily asset 
returns.

ExpReturn     = [0.0246  0.0189  0.0273  0.0141  0.0311]/100;

Sigmas        = [0.9509  1.4259  1.5227  1.1062  1.0877]/100;

Correlations  = [1.0000  0.4403  0.4735  0.4334  0.6855
                 0.4403  1.0000  0.7597  0.7809  0.4343
                 0.4735  0.7597  1.0000  0.6978  0.4926
                 0.4334  0.7809  0.6978  1.0000  0.4289
                 0.6855  0.4343  0.4926  0.4289  1.0000];

Convert the correlations and standard deviations to a covariance matrix of 
daily returns.

 ExpCovariance = corr2cov(Sigmas, Correlations);

Assume 252 trading days per calendar year, and simulate a single sample path 
of daily returns over a four-year period. Since the ExpReturn and 
ExpCovariance inputs are expressed on a daily basis, set RetIntervals = 1.

dt

dS
S

-------- µdt σdz+ µdt σε dt+= =

S µ σ
ε

dt
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StartPrice    = 100;
NumObs        = 1008; % four calendar years of daily returns
RetIntervals  = 1; % one trading day
NumAssets     = length(ExpReturn);
randn('state',0);
RetSeries1 = portsim(ExpReturn, ExpCovariance, NumObs, ... 
RetIntervals, 1, 'Expected');

Now annualize the daily data, thereby changing the periodicity of the data, by 
multiplying ExpReturn and ExpCovariance by 252 and dividing RetIntervals 
by 252 (RetIntervals = 1/252 of a year).

Resetting the random number generator to its initial state, you can reproduce 
the results.

randn('state',0); 
RetSeries2 = portsim(ExpReturn*252, ExpCovariance*252, ... 
NumObs, RetIntervals/252, 1, 'Expected');

Assume an equally-weighted portfolio and compute portfolio returns 
associated with each simulated return series.

Weights  = ones(NumAssets, 1)/NumAssets;

PortRet1 = RetSeries2 * Weights;
PortRet2 = RetSeries2 * Weights;

Comparison of the data reveals that PortRet1 and PortRet2 are identical.

Example 3. Univariate Geometric Brownian Motion

This example simulates a univariate geometric Brownian motion process. It is 
based on an example found in Hull, Options, Futures, and Other Derivatives, 
5th Edition. (See example 12.2 on page 236). In addition to verifying Hull’s 
example, it also graphically illustrates the lognormal property of terminal 
stock prices by a rather large Monte Carlo simulation.

First, assume you own a stock with an initial price of $20, an annualized 
expected return of 20% and volatility of 40%. Simulate the daily price process 
for this stock over the course of one full calendar year (252 trading days).

StartPrice    = 20;
ExpReturn     = 0.2; 
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ExpCovariance = 0.4^2;
NumObs        = 252;
NumSim        = 10000;
RetIntervals  = 1/252;

Note that RetIntervals is expressed in years, consistent with the fact that 
ExpReturn and ExpCovariance are annualized. Also, note that ExpCovariance 
is entered as a variance rather than the more familiar standard deviation 
(volatility).

Now set the random number generator state, and simulate 10,000 trials 
(realizations) of stock returns over a full calendar year of 252 trading days. 

randn('state',10);
RetSeries = squeeze(portsim(ExpReturn, ExpCovariance, NumObs, ... 
RetIntervals, NumSim, 'Expected'));

The squeeze function simply reformats the output array of simulated returns 
from a 252-by-1-by-10000 array to more convenient 252-by-10000 array. 
(Recall that portsim is fundamentally a multivariate simulation engine).

In accordance with Hull’s equations 12.4 and 12.5 on page 236

convert the simulated return series to a price series and compute the sample 
mean and the variance of the terminal stock prices. 

StockPrices = ret2tick(RetSeries, repmat(StartPrice, 1, NumSim));

SampMean = mean(StockPrices(end,:))

SampMean =

   24.4587

E ST( ) S0eµT=

var ST( ) S0
2e2µT eσ2T 1–( )=
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SampVar = var(StockPrices(end,:))

SampVar =

  104.2016

Compare these values with the values you obtain by using Hull’s equations.

ExpValue = StartPrice*exp(ExpReturn)

ExpValue =

   24.4281

ExpVar = ... 
StartPrice*StartPrice*exp(2*ExpReturn)*(exp((ExpCovariance)) - 1)

ExpVar =

  103.5391

These results are very close to the results shown in Hull’s example 12.2.

Next, display the sample density function of the terminal stock price after one 
calendar year. From the sample density function, the lognormal distribution of 
terminal stock prices is apparent.

[count, BinCenter] = hist(StockPrices(end,:), 30);
figure
bar(BinCenter, count/sum(count), 1, 'r')
xlabel('Terminal Stock Price')
ylabel('Probability')
title('Lognormal Terminal Stock Prices')
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See Also ewstats, portopt, portstats, randn, ret2tick

References Hull, John, C., Options, Futures, and Other Derivatives, Upper Saddle River, 
New Jersey: Prentice-Hall. 5th ed., 2003, ISBN 0-13-009056-5.
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5portstatsPurpose Portfolio expected return and risk

Syntax [PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance, 
PortWts)

Arguments

Description [PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance, 
PortWts) computes the expected rate of return and risk for a portfolio of assets.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.

Examples ExpReturn = [0.1 0.2 0.15]; 

ExpCovariance = [0.0100   -0.0061    0.0042 
-0.0061    0.0400   -0.0252 
0.0042   -0.0252    0.0225 ];

 
PortWts=[0.4 0.2 0.4; 0.2 0.4 0.2];

[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,... 
PortWts)

PortRisk =

    0.0560
    0.0550

ExpReturn 1 by number of assets (NASSETS) vector specifying the 
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of 
the asset returns.

PortWts (Optional) Number of portfolios (NPORTS) by NASSETS 
matrix of weights allocated to each asset. Each row 
represents a different weighting combination. 
Default = 1/NASSETS (equally weighted).
5-258



portstats
PortReturn =

    0.1400
    0.1300

See Also frontcon
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5portvriskPurpose Portfolio value at risk

Syntax ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold, 
PortValue)

Arguments

Description ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold, 
PortValue) returns the maximum potential loss in the value of a portfolio over 
one period of time, given the loss probability level RiskThreshold.

ValueAtRisk is an NPORTS-by-1 vector of the estimated maximum loss in the 
portfolio, predicted with a confidence probability of 1- RiskThreshold.

If PortValue is not given, ValueAtRisk is presented on a per-unit basis. A value 
of 0 indicates no losses.

Examples This example computes ValueAtRisk on a per-unit basis.

PortReturn = 0.29/100;
PortRisk = 3.08/100;
RiskThreshold = [0.01;0.05;0.10];
PortValue = 1;
ValueAtRisk = portvrisk(PortReturn,PortRisk,... 
RiskThreshold,PortValue)
ValueAtRisk =

    0.0688
    0.0478
    0.0366

PortReturn Number of portfolios (NPORTS) by 1 vector or scalar of the 
expected return of each portfolio over the period.

PortRisk NPORTS-by-1 vector or scalar of the standard deviation of 
each portfolio over the period.

RiskThreshold (Optional) NPORTS-by-1 vector or scalar specifying the loss       
probability. Default = 0.05 (5%).

PortValue (Optional) NPORTS-by-1 vector or scalar specifying the total 
value of asset portfolio. Default = 1.
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This example computes ValueAtRisk with actual values.

PortReturn = [0.29/100;0.30/100];
PortRisk = [3.08/100;3.15/100];
RiskThreshold = 0.10;
PortValue = [1000000000;500000000];
ValueAtRisk = portvrisk(PortReturn,PortRisk,... 
RiskThreshold,PortValue)
ValueAtRisk =

  1.0e+007 *
    3.6572
    1.8684

See Also frontcon, portopt
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5prbyzeroPurpose Price bonds in a portfolio by a set of zero curves

Syntax BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)

Arguments Bonds Coupon bond information used to compute prices. A number of 
bonds (NUMBONDS) by 6 matrix where each row describes a bond. 
The first two columns are required; the rest are optional but 
must be added in order. All rows in Bonds must have the same 
number of columns. Columns are 
[Maturity CouponRate Face Period Basis EndMonthRule] 
where:

Maturity Maturity date as a serial date number or date 
string

CouponRate Decimal number indicating the annual 
percentage rate used to determine the coupons 
payable on a bond

Face (Optional) Face or par value of the bond. 
Default = 100.

Period (Optional) Coupons per year of the bond. 
Allowed values are 0,1, 2 (default), 3, 4, 6, and 
12. 

Basis (Optional) Day-count basis of the instrument. A 
vector of integers. 0 = actual/actual (default), 
1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365, 
4 = 30/360 (PSA), 5 = 30/360 (ISDA), 
6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. This rule applies 
only when Maturity is an end-of-month date for 
a month having 30 or fewer days. 0 = ignore 
rule, meaning that a bond’s coupon payment 
date is always the same numerical day of the 
month. 1 = set rule on (default), meaning that a 
bond’s coupon payment date is always the last 
actual day of the month.
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Description BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)
computes the bond prices in a portfolio using a set of zero curves.

BondPrices is a NUMBONDS-by-NUMCURVES matrix of clean bond prices. Each 
column is derived from the corresponding zero curve in ZeroRates. 

Examples This example uses zbtprice to compute a zero curve given a portfolio of coupon 
bonds and their prices. It then reverses the process, using the zero curve as 
input to prbyzero to compute the prices.

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0; 
         datenum('7/1/2000') 0.06 100 2 0 0; 
         datenum('7/1/2000') 0.09375 100 6 1 0; 
         datenum('6/30/2001') 0.05125 100 1 3 1; 
         datenum('4/15/2002') 0.07125 100 4 1 0; 
         datenum('1/15/2000') 0.065 100 2 0 0; 
         datenum('9/1/1999') 0.08 100 3 3 0; 
         datenum('4/30/2001') 0.05875 100 2 0 0; 
         datenum('11/15/1999') 0.07125 100 2 0 0; 
         datenum('6/30/2000') 0.07 100 2 3 1; 
         datenum('7/1/2001') 0.0525 100 2 3 0; 
         datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [ 99.375;
           99.875;
          105.75 ;
           96.875;
          103.625;
          101.125;
          103.125;
           99.375;
          101.0  ;
          101.25 ;

Settle Serial date number of the settlement date.

ZeroRates NUMDATES-by-NUMCURVES matrix of observed zero rates, as 
decimal fractions. Each column represents a rate curve. Each 
row represents an observation date. 

ZeroDates NUMDATES-by-1 column of dates for observed zeros
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           96.375;
          102.75 ];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve, on an actual/365 basis. Derive 
the zero curve within 50 iterations.

OutputCompounding = 2;
OutputBasis = 3;
MaxIterations = 50;

Execute zbtprice

[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle,... 
OutputCompounding, OutputBasis, MaxIterations)

which returns the zero curve at the maturity dates. 

ZeroRates =

            0.0616
            0.0609
            0.0658
            0.0590
            0.0648
            0.0655
            0.0606
            0.0601
            0.0642
            0.0621
            0.0627

ZeroDates =

             729907
             730364
             730439
             730500
             730667
             730668
             730971
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             731032
             731033
             731321
             731336

Now execute prbyzero

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)

which returns 

BondPrices =

             99.38
             98.80
            106.83
             96.88
            103.62
            101.13
            103.12
             99.36
            101.00
            101.25
             96.37
            102.74

In this example zbtprice and prbyzero do not exactly reverse each other. 
Many of the bonds have the end-of-month rule off (EndMonthRule = 0). The rule 
subtly affects the time factor computation. If you set the rule on 
(EndMonthRule = 1) everywhere in the Bonds matrix, then prbyzero returns 
the original prices, except when the two incompatible prices fall on the same 
maturity date.

See Also tr2bonds, zbtprice
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5prdiscPurpose Price of discounted security

Syntax Price = prdisc(Settle, Maturity, Face, Discount, Basis)

Arguments

Description Price = prdisc(Settle, Maturity, Face, Discount, Basis)  returns the 
price of a security whose yield is quoted as a bank discount rate (e.g., U. S. 
Treasury Bills).

Examples Using this data

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Discount = 0.087;
Basis = 2;

Price = prdisc(Settle, Maturity, Face, Discount, Basis)

returns

 Price =

         96.2783

See Also acrudisc, bndprice, discrate, prmat, ylddisc

Settle Enter as serial date number or date string. Settle must be 
earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Bank discount rate of the security. Enter as decimal fraction.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.  
Formula 2.
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5prmatPurpose Price with interest at maturity

Syntax [Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face, 
CouponRate, Yield, Basis)

Arguments

Description [Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face, 
CouponRate, Yield, Basis)  returns the price and accrued interest of a 
security that pays interest at maturity. This function also applies to 
zero-coupon bonds or pure discount securities by setting CouponRate = 0.

Examples Using this data

Settle = '02/07/2002';
Maturity = '04/13/2002';
Issue = '10/11/2001';
Face = 100;
CouponRate = 0.0608;
Yield = 0.0608;
Basis = 1;

[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,... 
CouponRate, Yield, Basis)

Settle Enter as serial date number or date string. Settle must be 
earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.

Issue Enter as serial date number or date string.

Face Redemption (par, face) value.

CouponRate Enter as decimal fraction.

Yield Annual yield. Enter as decimal fraction.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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returns

Price =

  99.9784

AccruInterest =

    1.9591

See Also acrubond, acrudisc, bndprice, prdisc, yldmat

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.  
Formula 4.
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5prtbillPurpose Price of Treasury bill

Syntax Price = prtbill(Settle, Maturity, Face, Discount)

Arguments

Description Price = prtbill(Settle, Maturity, Face, Discount)  returns the price 
for a Treasury bill.

Examples The settlement date of a Treasury bill is February 10, 2002, the maturity date 
is August 6, 2002, the discount rate is 3.77%, and the par value is $1000. Using 
this data

Price = prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)

returns

Price =
        981.4642

See Also beytbill, yldtbill

References Bodie, Kane, and Marcus, Investments, pages 41-43.

Settle Enter as serial date number or date string. Settle must be 
earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Discount rate of the Treasury bill. Enter as decimal fraction.
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5pvfixPurpose Present value with fixed periodic payments

Syntax PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)

Arguments

Description PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)  
returns the present value of a series of equal payments.

Examples $200 is paid monthly into a savings account earning 6%. The payments are 
made at the end of the month for five years. To find the present value of these 
payments

PresentVal = pvfix(0.06/12, 5*12, 200, 0, 0)

returns

PresentVal =

             10345.11

See Also fvfix, fvvar, payper, pvvar

rate Periodic interest rate, as a decimal fraction.

NumPeriods Number of periods.

Payment Periodic payment.

ExtraPayment (Optional) Payment received other than Payment in the last 
period. Default = 0.

Due (Optional) When payments are due or made: 0 = end of 
period (default), or 1 = beginning of period.
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5pvvarPurpose Present value of varying cash flow

Syntax PresentVal = pvvar(CashFlow, Rate, IrrCFDates)

Arguments

Description PresentVal = pvvar(CashFlow, Rate, IrrCFDates)  returns the net present 
value of a varying cash flow.

Examples This cash flow represents the yearly income from an initial investment of 
$10,000.  The annual interest rate is 8%.

To calculate the net present value of this regular cash flow

PresentVal = pvvar([−10000 2000 1500 3000 3800 5000], 0.08)

returns

PresentVal =

             1715.39

CashFlow A vector of varying cash flows. Include the initial investment as 
the initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.

IrrCFDates (Optional) For irregular (nonperiodic) cash flows, a vector of 
dates on which the cash flows occur. Enter dates as serial date 
numbers or date strings. Default assumes CashFlow contains 
regular (periodic) cash flows.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000
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An investment of $10,000 returns this irregular cash flow.  The original 
investment and its date are included.  The periodic interest rate is 9%.

To calculate the net present value of this irregular cash flow

CashFlow = [−10000, 2500, 2000, 3000, 4000];

IrrCFDates = ['01/12/1987'
              '02/14/1988'
              '03/03/1988'
              '06/14/1988'
              '12/01/1988'];

PresentVal = pvvar(CashFlow, 0.09, IrrCFDates)

returns

PresentVal =

             142.16

See Also fvfix, fvvar, irr, payuni, pvfix

Cash flow Dates

($10000) January 12, 1987

   $2500 February 14, 1988

   $2000 March 3, 1988

   $3000 June 14, 1988

   $4000 December 1, 1988
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5pyld2zeroPurpose Zero curve given a par yield curve

Syntax [ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle, 
Compounding, Basis, OutputCompounding)

Arguments ParRates Column vector of annualized implied par yield rates, as 
decimal fractions. (Par yields = coupon rates.) In 
aggregate, the yield rates in ParRates constitute an 
implied par yield curve for the investment horizon 
represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date 
numbers) that correspond to the par rates. 

Settle A serial date number that is the common settlement 
date for the par rates.

Compounding (Optional) A scalar that sets the rate at which the par 
rates are compounded when annualized. Allowed 
values are: 

1 annual compounding

2 semiannual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

Basis (Optional) Day-count basis used to annualize the zero 
rates. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

OutputCompounding (Optional) Value representing the rate at which the 
zero rates are compounded. Default = Compounding.
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Description [ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle, 
Compounding, Basis, OutputCompounding) returns a zero curve given a par 
yield curve and its maturity dates.

Examples Given 

• A par yield curve over a set of maturity dates 

• A settlement date

• Annual compounding for the input par rates and monthly compounding for 
the output zero curve

compute a zero yield curve.

ParRates = [0.0479
            0.0522
            0.0540
            0.0540
            0.0536
            0.0532
            0.0532
            0.0539
            0.0558
            0.0543];

CurveDates = [datenum('06-Nov-2000')
      datenum('11-Dec-2000')
      datenum('15-Jan-2001')
      datenum('05-Feb-2001')
      datenum('04-Mar-2001')
      datenum('02-Apr-2001')
      datenum('30-Apr-2001')
      datenum('25-Jun-2001')

ZeroRates Column vector of decimal fractions. In aggregate, the rates in 
ZeroRates constitute a zero curve for the investment horizon 
represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date numbers) 
corresponding to the zero rates. This vector is the same as the 
input vector CurveDates. 
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      datenum('04-Sep-2001')
      datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
Compounding = 1;
OutputCompounding = 12;

[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates,... 
Settle, Compounding, [], OutputCompounding)

ZeroRates =

    0.0484
    0.0529
    0.0549
    0.0550
    0.0547
    0.0544
    0.0545
    0.0551
    0.0572
    0.0557

CurveDates =

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

For readability, ParRates and ZeroRates are shown only to the basis point. 
However, MATLAB computes them at full precision. If you enter ParRates as 
shown, ZeroRates may differ due to rounding.
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See Also zero2pyld and other functions for Term Structure of Interest Rates
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5ret2tickPurpose Convert a return series to a price series

Syntax [TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice, 
RetIntervals, StartTime, Method)

Arguments

Description [TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice, 
RetIntervals, StartTime, Method) generates price values from the starting 
prices of NASSETS investments and NUMOBS incremental return observations.

TickSeries is a NUMOBS+1-by-NASSETS times series array of equity prices. The 
first row contains the oldest observations and the last row the most recent. 
Observations across a given row occur at the same time for all columns. Each 
column is a price series of an individual asset. If Method is unspecified or 
'Simple', the prices are

TickSeries(i+1) = TickSeries(i)*[1 + RetSeries(i)]

RetSeries Number of observations (NUMOBS) by number of assets 
(NASSETS) time series array of asset returns associated with 
the prices in TickSeries. The i'th return is quoted for the 
period TickTimes(i) to TickTimes(i+1) and is not 
normalized by the time increment between successive price 
observations.

StartPrice (Optional) 1-by-NASSETS vector of initial asset prices or a 
single scalar initial price applied to all assets. Prices start at 
1 if StartPrice is not specified. 

RetIntervals (Optional) Scalar or NUMOBS-by-1 vector of interval times 
between observations. If this argument is not specified, all 
intervals are assumed to have length 1. 

StartTime (Optional) Starting time for first observation, applied to the 
price series of all assets. The default is zero. 

Method (Optional) Character string indicating the method to convert 
asset returns to prices. Must be 'Simple' (default) or 
'Continuous'. If Method is 'Simple', ret2tick uses simple 
periodic returns. If Method is 'Continuous', the function 
uses continuously compounded returns. Case is ignored for 
Method.
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If Method is 'Continuous', the prices are

TickSeries(i+1) = TickSeries(i)*exp[RetSeries(i)]

TickTimes is a NUMOBS+1 column vector of monotonically increasing 
observation times associated with the prices in TickSeries. The initial time is 
zero unless specified in StartTime, and sequential observation times occur at 
unit increments unless specified in RetIntervals.

Examples Compute the price increase of two stocks over a year’s time based on three 
incremental return observations.

RetSeries = [0.10 0.12
             0.05 0.04
            -0.05 0.05];

RetIntervals = [182 
                 91
                 92];

StartTime = datenum('18-Dec-2000');

[TickSeries,TickTimes] = ret2tick(RetSeries,[],RetIntervals,... 
StartTime)

TickSeries =

    1.0000    1.0000
    1.1000    1.1200
    1.1550    1.1648
    1.0973    1.2230

TickTimes =

      730838
      731020
      731111
      731203

datestr(TickTimes)
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ans =

18-Dec-2000
18-Jun-2001
17-Sep-2001
18-Dec-2001

See Also portsim, tick2ret
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5secondPurpose Seconds of date or time

Syntax Seconds = second(Date)

Description Seconds = second(Date)  returns the seconds given a serial date number or a 
date string.

Examples Seconds = second(738647.558427893)

or

Seconds = second('06-May-2022, 13:24:08.17')

returns

Seconds =

          8.1700

See Also datevec, hour, minute
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5taxedrrPurpose After-tax rate of return

Syntax Return = taxedrr(PreTaxReturn, TaxRate)

Arguments

Description Return = taxedrr(PreTaxReturn, TaxRate)  calculates the after-tax rate of 
return.

Examples An investment has a 12% nominal rate of return and is taxed at a 30% rate. 
The after-tax rate of return is

Return = taxedrr(0.12, 0.30)

Return =
         0.0840

or 8.4%

See Also effrr, irr, mirr, nomrr, xirr

PreTaxReturn Nominal rate of return. Enter as a decimal fraction.

TaxRate Tax rate. Enter as a decimal fraction.
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5tbl2bondPurpose Treasury bond parameters given Treasury bill parameters

Syntax [TBondMatrix, Settle] = tbl2bond(TBillMatrix)

Arguments

Description [TBondMatrix, Settle] = tbl2bond(TBillMatrix) restates U.S. Treasury 
bill market parameters in U.S. Treasury bond form as zero-coupon bonds. This 
function makes Treasury bills directly comparable to Treasury bonds and 
notes.

TBillMatrix Treasury bill parameters. An n-by-5 matrix where each row 
describes a Treasury bill. n is the number of Treasury bills. 
Columns are [Maturity DaysMaturity Bid Asked AskYield] 
where:

Maturity Maturity date, as a serial date number. Use 
datenum to convert date strings to serial date 
numbers.

DaysMaturity Days to maturity, as an integer. Days to 
maturity is quoted on a skip-day basis; the 
actual number of days from settlement to 
maturity is DaysMaturity + 1.

Bid Bid bank-discount rate: the percentage discount 
from face value at which the bill could be bought, 
annualized on a simple-interest basis. A decimal 
fraction.

Asked Asked bank-discount rate, as a decimal fraction.

AskYield Asked yield: the bond-equivalent yield from 
holding the bill to maturity, annualized on a 
simple-interest basis and assuming a 365-day 
year. A decimal fraction.
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Examples Given published Treasury bill market parameters for December 22, 1997

TBill = [datenum('jan 02 1998')  10  0.0526  0.0522  0.0530
         datenum('feb 05 1998')  44  0.0537  0.0533  0.0544
         datenum('mar 05 1998')  72  0.0529  0.0527  0.0540];

Execute the function.

TBond = tbl2bond(TBill)

TBond =
            0  729760       99.854       99.855     0.053
            0  729790       99.344       99.349     0.0544
            0  729820       98.942       98.946     0.054

(Example output has been formatted for readability.)

See Also tr2bonds and other functions for Term Structure of Interest Rates

TBondMatrix Treasury bond parameters. An N-by-5 matrix where each row 
describes an equivalent Treasury (zero-coupon) bond. Columns 
are [CouponRate Maturity Bid Asked AskYield] where

CouponRate Coupon rate, which is always 0.

Maturity Maturity date, as a serial date number. This 
date is the same as the Treasury bill Maturity 
date. 

Bid Bid price based on $100 face value.

Asked Asked price based on $100 face value.

AskYield Asked yield to maturity: the effective return 
from holding the bond to maturity, annualized 
on a compound-interest basis.
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5thirdwednesdayPurpose Find third Wednesday of month

Syntax [BeginDates, EndDates] = thirdwednesday(Month, Year)

Arguments

Inputs can be scalars or n-by-1 vectors.

Description [BeginDates, EndDates] = thirdwednesday(Month, Year) computes the 
beginning and end period date for a LIBOR contract (third Wednesdays of 
delivery months).

BeginDates is the beginning of three-month period contract as specified by 
Month and Year.

EndDates is the end of three-month period contract as specified by Month and 
Year.

Note   
1. All dates are returned as serial date numbers. Convert to strings using 
datestr.
2. The function returns duplicates if you supply identical months and years.       
3. The function supports dates from January 2000 to December 2099.

Examples Find the third Wednesday dates for swaps commencing in the month of October 
in the years 2002, 2003, and 2004.

Months = [10; 10; 10];
Year = [2002; 2003; 2004];
[BeginDates, EndDates] = thirdwednesday(Months, Year);

Month Month of delivery for Eurodollar futures.

Year Four-digit year of delivery for Eurodollar futures, in 
sequence corresponding to a month in the Month input 
argument.
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datestr(BeginDates)

ans =

16-Oct-2002
15-Oct-2003
20-Oct-2004

datestr(EndDates)

ans =

16-Jan-2003
15-Jan-2004
20-Jan-2005
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5thirtytwo2decPurpose Thirty-second quotation to decimal

Syntax OutNumber =  thirtytwo2dec(InNumber, InFraction)

Arguments

Description OutNumber = thirtytwo2dec(InNumber, InFraction) changes the price 
quotation for a bond or bond future from a fraction with a denominator of 32 to 
a decimal.

OutNumber represents the sum of InNumber and InFraction expressed as a 
decimal.

Examples Two bonds are quoted as 101-25 and 102-31. Convert these prices to decimal.

InNumber  = [101; 102];
InFraction = [25; 31]

OutNumber = thirtytwo2dec(InNumber, InFraction)

OutNumber =

101.7813
102.9688

See Also dec2thirtytwo

InNumber Scalar or vector of input numbers without fractional 
component.

InFraction Scalar or vector of fractional portions of each element in 
InNumber.
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5tick2retPurpose Convert a price series to a return series

Syntax [RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, Method)

Arguments

Description [RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, Method)
computes the asset returns realized between NUMOBS observations of prices of 
NASSETS assets.

RetSeries is a (NUMOBS-1)-by-NASSETS time series array of asset returns 
associated with the prices in TickSeries. The i’th return is quoted for the 
period TickTimes(i) to TickTimes(i+1) and is not normalized by the time 
increment between successive price observations. If Method is unspecified or 
'Simple', the returns are:

RetSeries(i) = TickSeries(i+1)/TickSeries(i) - 1

If Method is 'Continuous', the returns are:

RetSeries(i) = log[TickSeries(i+1)/TickSeries(i)]

TickSeries Number of observations (NUMOBS) by number of assets 
(NASSETS) matrix of prices of equity assets. Each column is a 
price series of an individual asset. First row is oldest 
observation. Last row is most recent. Observations across a 
given row occur at the same time for all columns. 

TickTimes (Optional) NUMOBS-by-1 increasing vector of observation times 
associated with the prices in TickSeries. Times are serial 
date numbers (day units) or decimal numbers in arbitrary 
units (e.g., yearly). If TickTimes is empty or missing,   
sequential observation times from 1, 2, ... NUMOBS are 
assumed. 

Method (Optional) Character string indicating the method to convert 
prices to asset returns. Must be 'Simple' (default) or 
'Continuous'. If Method is 'Simple', tick2ret computes 
simple periodic returns. If Method is 'Continuous', returns 
are continuously compounded. Case is ignored for Method.
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RetIntervals is a (NUMOBS-1)-by-1 column vector of interval times between      
observations. If TickTimes is empty or unspecified, all intervals are assumed 
to have length 1.

Examples Compute the periodic returns of two stocks observed in the first, second, third, 
and fourth quarters.

TickSeries = [100 80
              110 90
              115 88
              110 91];

TickTimes = [0
             6
             9
             12];

[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)

RetSeries =

    0.1000    0.1250
    0.0455   -0.0222
   -0.0435    0.0341

RetIntervals =

     6
     3
     3

See Also ewstats, ret2tick
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5time2datePurpose Dates from time and frequency

Syntax Dates = time2date(Settle, TFactors, Compounding, Basis, 
EndMonthRule)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. 

TFactors A vector of time factors corresponding to the 
compounding value. TFactors must be equal to or 
greater than zero.

Compounding (Optional) Scalar value representing the rate at which 
the input zero rates were compounded when annualized. 
Default = 2. This argument determines the formula for 
the discount factors: 

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the compounding 
frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 

Disc = (1 + Z/F)^(-T), where F is the number of days 
in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.
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Description Dates = time2date(Settle, TFactors, Compounding, Basis, 
EndMonthRule) computes dates corresponding to the times occurring beyond 
the settlement date.

The time2date function is the inverse of date2time.

Examples Show that date2time and time2date are the inverse of each other. First 
compute the time factors using date2time.

Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006'; 

'31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
TFactors = date2time(Settle, Dates, Compounding, Basis,... 

EndMonthRule)

TFactors =

    5.9945
    6.9945
    7.5738
    8.6576

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.
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Now use the calculated TFactors in time2date and compare the calculated 
dates with the original set.

Dates_calc = time2date(Settle, TFactors, Compounding, Basis,... 
EndMonthRule)

Dates_calc =

      732555
      732736
      732843
      733042

datestr(Dates_calc)

ans =

31-Aug-2005
28-Feb-2006
15-Jun-2006
31-Dec-2006

See Also cftimes, date2time
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5todayPurpose Current date

Syntax Datenum = today

Description Datenum = today  returns the current date as a serial date number.

Examples Datenum = today

returns

Datenum =

      730695

 on July 28, 2000.

See Also datenum, datestr, now
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5tr2bondsPurpose Term-structure parameters given Treasury bond parameters

Syntax [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle)

Arguments

Description [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle) returns 
term-structure parameters (bond information, prices, and yields) sorted by 
ascending maturity date, given Treasury bond parameters. The formats of the 
output matrix and vectors meet requirements for input to the zbtprice and 
zbtyield zero-curve bootstrapping functions.

TreasuryMatrix Treasury bond parameters. An n-by-5 matrix, where each 
row describes a Treasury bond. Columns are 
[CouponRate Maturity Bid Asked AskYield] where

CouponRate Coupon rate, as a decimal fraction.

Maturity Maturity date, as a serial date number. Use 
datenum to convert date strings to serial date 
numbers.

Bid Bid price based on $100 face value.

Asked Asked price based on $100 face value.

AskYield Asked yield to maturity, as a decimal fraction.

Settle (Optional) Date string or serial date number of the                
settlement date for the analysis.
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Examples Given published Treasury bond market parameters for December 22, 1997

Matrix =[0.0650 datenum('15-apr-1999') 101.03125 101.09375 0.0564
       0.05125 datenum('17-dec-1998') 99.4375  99.5    0.0563
      0.0625 datenum('30-jul-1998') 100.3125  100.375  0.0560
      0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];

Execute the function.

[Bonds, Prices, Yields] = tr2bonds(Matrix)

Bonds Coupon bond information. An n-by-6 matrix where each row 
describes a bond. Columns are 
[Maturity CouponRate Face Period Basis EndMonthRule] 
where:

Maturity Maturity date of the bond, as a serial date number. 
Use datestr to convert serial date numbers to date 
strings.

CouponRate Coupon rate of the bond, as a decimal fraction.

Face Redemption or face value of the bond, always 100.

Period Coupons per year of the bond, always 2.

Basis Day-count basis of the bond, always 0 
(actual/actual).

EndMonthRule End-of-month flag, always 1, meaning that a bond’s 
coupon payment date is always the last day of the 
month.

Prices Prices. A column vector containing the price of each bond in bonds, 
respectively. The number of rows (n) matches the number of rows in 
bonds.

Yields Yields. A column vector containing the yield to maturity of each 
bond in bonds, respectively. The number of rows (n) matches the 
number of rows in bonds. If Settle is input, Yields is computed as 
a semiannual yield to maturity. If Settle is not input, the quoted 
input yields will be used.
5-295



tr2bonds
Bonds =

  729840    0.06125    100    2    0    1
  729966    0.0625     100    2    0    1
  730106    0.05125    100    2    0    1
  730225    0.065      100    2    0    1

Prices =

         100.1563
         100.3750
          99.5000
         101.0938

Yields =

         0.0546
         0.056
         0.0563
         0.0564

(Example output has been formatted for readability.)

See Also tbl2bond, zbtprice, zbtyield, and other functions for Term Structure of 
Interest Rates
5-296



ugarch
5ugarchPurpose Univariate GARCH(P,Q) parameter estimation with Gaussian innovations

Syntax [Kappa, Alpha, Beta] = ugarch(U, P, Q)

Arguments

Description [Kappa, Alpha, Beta] = ugarch(U, P, Q) computes estimated univariate 
GARCH(P,Q) parameters with Gaussian innovations.

Kappa is the estimated scalar constant term (κ) of the GARCH process. 

Alpha is a P-by-1 vector of estimated coefficients, where P is the number of lags 
of the conditional variance included in the GARCH process.

Beta is a Q-by-1 vector of estimated coefficients, where Q is the number of lags 
of the squared innovations included in the GARCH process.

The time-conditional variance, σt
2, of a GARCH(P,Q) process is modeled as

where α represents the argument Alpha, β represents Beta, and the 
GARCH(P, Q) coefficients {κ, α, β} are subject to the following constraints.

U Single column vector of random disturbances, i.e., the residuals or 
innovations (εt), of an econometric model representing a mean-zero, 
discrete-time stochastic process. The innovations time series U is 
assumed to follow a GARCH(P,Q) process. 

P Non-negative, scalar integer representing a model order of the 
GARCH process. P is the number of lags of the conditional variance. 
P can be zero; when P = 0, a GARCH(0,Q) process is actually an 
ARCH(Q) process.

Q Positive, scalar integer representing a model order of the GARCH 
process. Q is the number of lags of the squared innovations. 

σt
2 κ αiσt i–

2

i 1=

P

∑ βjεt j–
2

j 1=

Q

∑+ +=
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Note that U is a vector of residuals or innovations (εt) of an econometric model, 
representing a mean-zero, discrete-time stochastic process. 

Although σt
2 is generated using the equation above, εt and σt

2 are related as

where {vt} is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Note  ugarch corresponds generally to the GARCH Toolbox function 
garchfit. The GARCH Toolbox provides a comprehensive and integrated 
computing environment for the analysis of volatility in time series. For 
information, see the GARCH Toolbox User’s Guide or the financial products 
Web page at http://www.mathworks.com/products/finprod/.

Examples See ugarchsim for an example of a GARCH(P,Q) process.

See Also ugarchpred, ugarchsim, and the GARCH Toolbox function garchfit

References James D. Hamilton, Time Series Analysis, Princeton University Press, 1994

ai
i 1=

P

∑ βj
j 1=

Q

∑+ 1<

κ 0>

ai 0≥ i 1 2 … P, , ,=

βj 0≥ j 1 2 … Q, , ,=

εt σtvt=
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5ugarchllfPurpose Log-likelihood objective function of univariate GARCH(P,Q) processes with 
Gaussian innovations

Syntax LogLikelihood = ugarchllf(Parameters, U, P, Q)

Arguments

Description LogLikelihood = ugarchllf(Parameters, U, P, Q) computes the 
log-likelihood objective function of univariate GARCH(P,Q) processes with 
Gaussian innovations.

LogLikelihood is a scalar value of the GARCH(P,Q) log-likelihood objective 
function given the input arguments. This function is meant to be optimized via 
the fmincon function of the Optimization Toolbox. 

fmincon is a minimization routine. To maximize the log-likelihood function, the 
LogLikelihood output parameter is actually the negative of what is formally 
presented in most time series or econometrics references.

Parameters (1 + P + Q)- by-1 column vector of GARCH(P,Q) process 
parameters. The first element is the scalar constant term κ of 
the GARCH process; the next P elements are coefficients 
associated with the P lags of the conditional variance terms; 
the next Q elements are coefficients associated with the Q lags 
of the squared innovations terms.

U Single column vector of random disturbances, i.e., the 
residuals or innovations (εt), of an econometric model 
representing a mean-zero, discrete-time stochastic process. 
The innovations time series U is assumed to follow a 
GARCH(P,Q) process. 

P Nonnegative, scalar integer representing a model order of the 
GARCH process. P is the number of lags of the conditional 
variance. P can be zero; when P = 0, a GARCH(0,Q) process is 
actually an ARCH(Q) process. 

Q Positive, scalar integer representing a model order of the 
GARCH process. Q is the number of lags of the squared 
innovations. 
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The time-conditional variance, σt
2, of a GARCH(P,Q) process is modeled as

where α represents the argument Alpha, and β represents Beta.

U is a vector of residuals or innovations (εt) representing a mean-zero, discrete 
time stochastic process. Although σt

2 is generated via the equation above, εt 
and σt

2 are related as

where {vt} is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Since ugarchllf is really just a helper function, no argument checking is 
performed. This function is not meant to be called directly from the command 
line.

Note  The GARCH Toolbox provides a comprehensive and integrated 
computing environment for the analysis of volatility in time series. For 
information see the GARCH Toolbox User’s Guide or the financial products 
Web page at http://www.mathworks.com/products/finprod/.

See Also ugarch, ugarchpred, ugarchsim

σt
2 κ αiσt i–

2

i 1=

P

∑ βjεt j–
2

j 1=

Q

∑+ +=

εt σtvt=
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5ugarchpredPurpose Forecast conditional variance of univariate GARCH(P,Q) processes

Syntax [VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta, 
NumPeriods)

Arguments

Description [VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta, 
NumPeriods) forecasts the conditional variance of univariate GARCH(P,Q) 
processes.

VarianceForecast is a number of periods (NUMPERIODS)-by-1 vector of the 
minimum mean-square error forecast of the conditional variance of the 
innovations time series vector U (i.e., εt). The first element contains the 
1-period-ahead forecast, the second element contains the 2-period-ahead 
forecast, and so on. Thus, if a forecast horizon greater than 1 is specified 
(NUMPERIODS > 1), the forecasts of all intermediate horizons are returned as 
well. In this case, the last element contains the variance forecast of the 
specified horizon, NumPeriods from the most recent observation in U.

H is a vector of the conditional variances (σt
2) corresponding to the innovations 

vector U. It is inferred from the innovations U, and is a reconstruction of the 

U Single column vector of random disturbances, i.e., the 
residuals or innovations (εt), of an econometric model 
representing a mean-zero, discrete-time stochastic process. 
The innovations time series U is assumed to follow a 
GARCH(P,Q) process. 

Kappa Scalar constant term κ of the GARCH process.

Alpha P-by-1 vector of coefficients, where P is the number of lags of 
the conditional variance included in the GARCH process. 
Alpha can be an empty matrix, in which case P is assumed 0; 
when P = 0, a GARCH(0,Q) process is actually an ARCH(Q) 
process. 

Beta Q-by-1 vector of coefficients, where Q is the number of lags of 
the squared innovations included in the GARCH process.

NumPeriods Positive, scalar integer representing the forecast horizon of 
interest, expressed in periods compatible with the sampling 
frequency of the input innovations column vector U.
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“past” conditional variances, whereas the VarianceForecast output 
represents the projection of conditional variances into the “future.” This 
sequence is based on setting pre-sample values of σt

2 to the unconditional 
variance of the {εt} process. H is a single column vector of the same length as the 
input innovations vector U. 

The time-conditional variance, σt
2, of a GARCH(P,Q) process is modeled as

where α represents the argument Alpha, β represents Beta, and the 
GARCH(P,Q) coefficients {κ, α, β} are subject to the following constraints.

Note that U is a vector of residuals or innovations (εt) of an econometric model, 
representing a mean-zero, discrete-time stochastic process. 

Although σt
2 is generated using the equation above, εt and σt

2 are related as

where {vt} is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Note   ugarchpred corresponds generally to the GARCH Toolbox function 
garchpred. The GARCH Toolbox provides a comprehensive and integrated 
computing environment for the analysis of volatility in time series. For 
information see the GARCH Toolbox User’s Guide or the financial products 
Web page at http://www.mathworks.com/products/finprod/.

σt
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Examples See ugarchsim for an example of forecasting the conditional variance of a 
univariate GARCH(P,Q) process.

See Also ugarch, ugarchsim, and the GARCH Toolbox function garchpred
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5ugarchsimPurpose Simulate a univariate GARCH(P,Q) process with Gaussian innovations

Syntax [U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples)

Arguments

Description [U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples) simulates a 
univariate GARCH(P,Q) process with Gaussian innovations.

U is a number of samples (NUMSAMPLES)-by-1 vector of innovations (εt), 
representing a mean-zero, discrete-time stochastic process. The innovations 
time series U is designed to follow the GARCH(P,Q) process specified by the 
inputs Kappa, Alpha, and Beta. 

H is a NUMSAMPLES-by-1 vector of the conditional variances (σt
2) corresponding 

to the innovations vector U. Note that U and H are the same length, and form a 
“matching” pair of vectors. As shown in the following equation, σt

2 (i.e., H(t)) 
represents the time series inferred from the innovations time series {εt} (i.e., 
U). 

 The time-conditional variance, σt
2, of a GARCH(P,Q) process is modeled as

where α represents the argument Alpha, β represents Beta, and the 
GARCH(P,Q) coefficients {κ, α, β} are subject to the following constraints.

Kappa Scalar constant term κ of the GARCH process.

Alpha P-by-1 vector of coefficients, where P is the number of lags of 
the conditional variance included in the GARCH process. 
Alpha can be an empty matrix, in which case P is assumed 0; 
when P = 0, a GARCH(0,Q) process is actually an ARCH(Q) 
process. 

Beta Q-by-1 vector of coefficients, where Q is the number of lags of 
the squared innovations included in the GARCH process.

NumSamples Positive, scalar integer indicating the number of samples of 
the innovations U and conditional variance H (see below) to 
simulate. 

σt
2 κ αiσt i–

2

i 1=

P
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Note that U is a vector of residuals or innovations (εt) of an econometric model, 
representing a mean-zero, discrete-time stochastic process. 

Although σt
2 is generated using the equation above, εt and σt

2 are related as

where {vt} is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

The output vectors U and H are designed to be steady-state sequences in which 
transients have arbitrarily small effect. The (arbitrary) metric used by 
ugarchsim strips the first N samples of U and H such that the sum of the GARCH 
coefficients, excluding Kappa, raised to the Nth power, does not exceed 0.01.

       0.01 = (sum(Alpha) + sum(Beta))^N

Thus

       N = log(0.01)/log((sum(Alpha) + sum(Beta)))

Note  ugarchsim corresponds generally to the GARCH Toolbox function 
garchsim. The GARCH Toolbox provides a comprehensive and integrated 
computing environment for the analysis of volatility in time series. For 
information see the GARCH Toolbox User’s Guide or the financial products 
Web page at http://www.mathworks.com/products/finprod/.
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Examples This example simulates a GARCH(P,Q) process with P = 2 and Q = 1.

% Set the random number generator seed for reproducability.

randn('seed', 10)

% Set the simulation parameters of GARCH(P,Q) = GARCH(2,1) process.

Kappa = 0.25;      %a positive scalar.
Alpha = [0.2 0.1]'; %a column vector of nonnegative numbers (P = 2).
Beta = 0.4;        % Q = 1.
NumSamples = 500;  % number of samples to simulate.

% Now simulate the process.

[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples);

% Estimate the process parameters.

P = 2;    % Model order P (P = length of Alpha).
Q = 1;    % Model order Q (Q = length of Beta).
[k, a, b] = ugarch(U , P , Q);
disp(' ')
disp(' Estimated Coefficients:')
disp(' -----------------------')
disp([k; a; b])
disp(' ')

% Forecast the conditional variance using the estimated   
% coefficients.

NumPeriods = 10;    % Forecast out to 10 periods.
[VarianceForecast, H1] = ugarchpred(U, k, a, b, NumPeriods);
disp(' Variance Forecasts:')
disp(' ------------------')
disp(VarianceForecast)
disp(' ')

When the above code is executed, the screen output looks like the display 
shown.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Diagnostic Information 

Number of variables: 4

Functions 
Objective:        ugarchllf
Gradient:         finite-differencing
Hessian:          finite-differencing (or Quasi-Newton)

Constraints
Nonlinear constraints:             do not exist
Number of linear inequality constraints:    1
Number of linear equality constraints:      0
Number of lower bound constraints:          4
Number of upper bound constraints:          0
Algorithm selected
   medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
End diagnostic information 

                                max                 Directional 

 Iter   F-count    f(x)   constraint   Step-size     derivative     Procedure 
    1     5     699.185      -0.125            1      -2.97e+006     
    2    22     658.224     -0.1249     0.000488           -64.6     
    3    28     610.181           0            1           -49.4     
    4    35     590.888           0          0.5           -38.9     
    5    42     583.961    -0.03317          0.5           -29.8     
    6    49     583.224    -0.02756          0.5           -31.8     
    7    57     582.947    -0.02067         0.25           -7.28     
    8    63     578.182           0            1           -2.43     
    9    71     578.138    -0.09145         0.25           -0.55     
   10    77     577.898    -0.04452            1          -0.148     
   11    84     577.882    -0.06128          0.5         -0.0488     
   12    90     577.859    -0.07117            1       -0.000758     
   13    96     577.858   -0.07033            1       -0.000305    Hessian modified
   14   102     577.858    -0.07042            1      -3.32e-005    Hessian modified
   15   108     577.858     -0.0707            1      -1.29e-006    Hessian modified
   16   114     577.858    -0.07077            1      -1.29e-007    Hessian modified
   17   120     577.858    -0.07081            1      -1.97e-007    Hessian modified
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Optimization Converged Successfully
Magnitude of directional derivative in search direction 
  less than 2*options.TolFun and maximum constraint violation 
  is less than options.TolCon
No Active Constraints

Estimated Coefficients:
----------------------
0.2520
0.0708
0.1623
0.4000

Variance Forecasts:
------------------
1.3243
0.9594
0.9186
0.8402
0.7966
0.7634
0.7407
0.7246
0.7133
0.7054

See Also ugarch, ugarchpred, and the GARCH Toolbox function garchsim

References James D. Hamilton, Time Series Analysis, Princeton University Press, 1994
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5weekdayPurpose Day of the week

Syntax [DayNum, DayString] = weekday(Date)

Description [DayNum, DayString] = weekday(Date)  returns the day of the week in 
numeric and string form given the date as a serial date number or date string. 
The days of the week have these values.

Note  This function now ships with basic MATLAB. It originally shipped only 
with the Financial Toolbox. This description remains here for your 
convenience.

DayNum DayString

1 Sun

2 Mon

3 Tue

4 Wed

5 Thu

6 Fri

7 Sat
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Examples [DayNum, DayString] = weekday(730845)

or 

[DayNum, DayString] = weekday('25-Dec-2000')

returns

DayNum =

     2

DayString =

Mon

See Also datenum, datestr, datevec, day
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5wrkdydifPurpose Number of working days between dates

Syntax Days = wrkdydif(StartDate, EndDate, Holidays)

Description Days = wrkdydif(StartDate, EndDate, Holidays)  returns the number of 
working days between dates StartDate and EndDate. Holidays is the number 
of holidays between the given dates, an integer. Enter dates as serial date 
numbers or date strings.

Examples Days = wrkdydif('9/1/2000', '9/11/2000', 1)

or

Days = wrkdydif(730730, 730740, 1)

returns

Days =

       6

See Also busdate, datewrkdy, days360, days365, daysact, daysdif, holidays, 
yearfrac
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5x2mdatePurpose Excel serial date number to MATLAB serial date number

Syntax MATLABDate = x2mdate(ExcelDateNumber, Convention)

Arguments

Vector arguments must have consistent dimensions.

Description DateNumber = x2mdate(ExcelDateNumber, Convention) converts Excel 
serial date numbers to MATLAB serial date numbers. MATLAB date numbers 
start with 1 = January 1, 0000 A.D., hence there is a difference of 693961 
relative to the 1900 date system, or 695422 relative to the 1904 date system. 
This function is useful with MATLAB Excel Link.

Examples Given Excel date numbers in the 1904 system

ExDates = [35423  35788  36153];

convert them to MATLAB date numbers

MATLABDate = x2mdate(ExDates, 1)

MATLABDate =

      730845      731210      731575      

and then to date strings.

ExcelDateNumber A vector or scalar of Excel serial date numbers.

Convention (Optional) Excel date system. A vector or scalar. When 
Convention = 0 (default), the Excel 1900 date system is 
in effect. When Convention = 1, the Excel 1904 date 
system in used. 

In the Excel 1900 date system, the Excel serial date 
number 1 corresponds to January 1, 1900 A.D. In the 
Excel 1904 date system, date number 0 is January 1, 
1904 A.D.
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datestr(MATLABDate)

ans =

25-Dec-2000
25-Dec-2001
25-Dec-2002

See Also datenum, datestr, m2xdate
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5xirrPurpose Internal rate of return for nonperiodic cash flow

Syntax Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations)

Arguments

Description Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations)  
returns the internal rate of return for a schedule of nonperiodic cash flows.

Examples An investment of $10,000 returns this nonperiodic cash flow.  The original 
investment and its date are included.

To calculate the internal rate of return for this nonperiodic cash flow

CashFlow = [−10000, 2500, 2000, 3000, 4000];
CashFlowDates = ['01/12/2000'
                 '02/14/2001'
                 '03/03/2001'
                 '06/14/2001'
                 '12/01/2001'];

CashFlow A vector of nonperiodic cash flows. Include the initial 
investment as the initial cash flow value (a negative 
number).

CashFlowDates A vector of dates on which the cash flows occur. Enter dates 
as serial date numbers or date strings.

Guess (Optional) Initial estimate of the expected return. 
Default = 0.1 (10%).

MaxIterations (Optional) Number of iterations used by Newton’s method 
to solve for Return. Default = 50.

Cash flow Dates

($10000) January 12, 2000

   $2500 February 14, 2001

   $2000 March 3, 2001

   $3000 June 14, 2001

   $4000 December 1, 2001
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Return = xirr(CashFlow, CashFlowDates)

returns

Return =
         0.1009 (or 10.09%)

See Also fvvar, irr, mirr, pvvar

References Sharpe and Alexander, Investments, 4th edition, page 463.
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5yearPurpose Year of date

Syntax Year = year(Date)

Description Year = year(Date)  returns the year of a serial date number or a date string.

Examples Year = year(731798.776)

or

Year = year('05-Aug-2003')

returns

 Year =

        2003

See Also datevec, day, month, yeardays
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5yeardaysPurpose Number of days in year

Syntax Days = yeardays(Year, Basis)

Arguments

Description Days = yeardays(Year, Basis) returns the number of days in the given year, 
based upon the day-count basis. 

Examples Days = yeardays(2000)

Days =

       366

Days = yeardays(2000, 1)

Days =

   360

See Also days360, days365, daysact, year, yearfrac

Year Enter as a four-digit integer.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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5yearfracPurpose Fraction of year between dates

Syntax Fraction = yearfrac(StartDate, EndDate, Basis) 

Arguments

All specified arguments must be number of instruments (NUMINST) by 1 or 
1-by-NUMINST conforming vectors or scalar arguments.

Description Fraction = yearfrac(StartDate, EndDate, Basis)  returns a fraction 
based on the number of days between dates StartDate and EndDate using the 
given day-count basis. If EndDate is earlier than StartDate, Fraction is 
negative. 

Examples Fraction = yearfrac('14 mar 01', '14 sep 01', 0)

Fraction =

    0.5041

Fraction = yearfrac('14 mar 01', '14 sep 01', 1)

Fraction =

    0.5000

See Also days360, days365, daysact, daysdif, months, wrkdydif, yeardays

StartDate Enter as serial date numbers or date strings. 

EndDate Enter as serial date numbers or date strings.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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5ylddiscPurpose Yield of discounted security

Syntax Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

Arguments

Description Yield = ylddisc(Settle, Maturity, Face, Price, Basis)  finds the yield 
of a discounted security.

Examples Using the data

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Price = 96.28;
Basis = 2;

Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

returns

Yield =

        0.0903 (or 9.03%)

See Also acrudisc, bndprice, bndyield, prdisc, yldmat, yldtbill

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.  
Formula 1.

Settle Settlement date. Enter as serial date number or date string. 
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.

Face Redemption (par, face) value.

Price Discounted price of the security.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
5-319



yldmat
5yldmatPurpose Yield with interest at maturity

Syntax Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate, 
Basis)

Arguments

Description Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate, 
Basis)  returns the yield of a security paying interest at maturity.

Examples Using the data

Settle = '02/07/2000';
Maturity = '04/13/2000';
Issue = '10/11/1999';
Face = 100;
Price = 99.98;
CouponRate = 0.0608;
Basis = 1;

Yield = yldmat(Settle, Maturity, Issue, Face, Price,... 
CouponRate, Basis)

returns

Yield =

Settle Settlement date. Enter as serial date number or date string. 
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.

Issue Issue date. Enter as serial date number or date string.

Face Redemption (par, face) value.

Price Price of the security.

CouponRate Coupon rate. Enter as decimal fraction.

Basis (Optional) Day-count basis of the instrument. A vector of 
integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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        0.0607 (or 6.07%)

See Also acrubond, bndprice, bndyield, prmat, ylddisc, yldtbill

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition. 
Formula 3.
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5yldtbillPurpose Yield of Treasury bill

Syntax Yield = yldtbill(Settle, Maturity, Face, Price)

Arguments

Description Yield = yldtbill(Settle, Maturity, Face, Price)  returns the yield for a 
Treasury bill.

Examples The settlement date of a Treasury bill is February 10, 2000, the maturity date 
is August 6, 2000, the par value is $1000, and the price is $981.36. Using this 
data

Yield = yldtbill('2/10/2000', '8/6/2000', 1000, 981.36)

returns

Yield =

        0.0384 (or 3.84%)

See Also beytbill, bndyield, prtbill, yldmat

References Bodie, Kane, and Marcus, Investments, pages 41-43.

Settle Settlement date. Enter as serial date number or date string. 
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.

Face Redemption (par, face) value.

Price Price of the Treasury bill.
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5zbtpricePurpose Zero curve bootstrapping from coupon bond data given price

Syntax [ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle, 
OutputCompounding)

Arguments Bonds Coupon bond information used to generate the zero 
curve. An n-by-2 to n-by-6 matrix where each row 
describes a bond. The first two columns are required; 
the rest are optional but must be added in order. All 
rows in Bonds must have the same number of columns. 

Columns are 
[Maturity CouponRate Face Period Basis
EndMonthRule] where

Maturity Maturity date of the bond, as a serial 
date number. Use datenum to convert 
date strings to serial date numbers.

CouponRate Coupon rate of the bond, as a decimal 
fraction.

Face (Optional) Redemption or face value of 
the bond. Default = 100.

Period (Optional) Coupons per year of the bond, 
as an integer. Allowed values are 0, 1, 2 
(default), 3, 4, 6, and 12. 

Basis (Optional) Day-count basis of the bond: 
0 = actual/actual (default), 1 = 30/360 
(SIA), 2 = actual/360, 3 = actual/365, 
4 = 30/360 (PSA), 5 = 30/360 (ISDA), 
6 = 30/360 (European), 
7 = actual/365 (Japanese).
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Description [ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle, 
OutputCompounding) uses the bootstrap method to return a zero curve given a 
portfolio of coupon bonds and their prices. A zero curve consists of the yields to 
maturity for a portfolio of theoretical zero-coupon bonds that are derived from 
the input Bonds portfolio. The bootstrap method that this function uses does 

EndMonthRule (Optional) End-of-month flag. This flag 
applies only when Maturity is an 
end-of-month date for a month having 
30 or fewer days. 0 = ignore flag, 
meaning that a bond’s coupon payment 
date is always the same day of the 
month. 1 = set flag (default), meaning 
that a bond’s coupon payment date is 
always the last day of the month.

Prices A column vector containing the clean price (price 
without accrued interest) of each bond in Bonds, 
respectively. The number of rows (n) must match the 
number of rows in Bonds.

Settle Settlement date, as a scalar serial date number. This 
represents time zero for deriving the zero curve, and it 
is normally the common settlement date for all the 
bonds.

OutputCompounding (Optional) A scalar that sets the compounding 
frequency per year for the output zero rates in 
ZeroRates. Allowed values are: 

1 annual compounding

2 semiannual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

-1 continuous compounding
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not require alignment among the cash-flow dates of the bonds in the input 
portfolio. It uses theoretical par bond arbitrage and yield interpolation to 
derive all zero rates. For best results, use a portfolio of at least 30 bonds evenly 
spaced across the investment horizon.

Examples Given data and prices for 12 coupon bonds, two with the same maturity date; 
and given the common settlement date

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;
         datenum('7/1/2000')   0.06     100  2  0  0;
         datenum('7/1/2000')   0.09375  100  6  1  0;
         datenum('6/30/2001')  0.05125  100  1  3  1;
         datenum('4/15/2002')  0.07125  100  4  1  0;
         datenum('1/15/2000')  0.065    100  2  0  0;
         datenum('9/1/1999')   0.08     100  3  3  0;
         datenum('4/30/2001')  0.05875  100  2  0  0;
         datenum('11/15/1999') 0.07125  100  2  0  0;
         datenum('6/30/2000')  0.07     100  2  3  1;
         datenum('7/1/2001')   0.0525   100  2  3  0;
         datenum('4/30/2002')  0.07     100  2  0  0];

Prices = [99.375;
          99.875;
         105.75 ;
          96.875;
         103.625;

ZeroRates An m-by-1 vector of decimal fractions that are the implied zero 
rates for each point along the investment horizon represented 
by CurveDates; m is the number of bonds of unique maturity 
dates. In aggregate, the rates in ZeroRates constitute a zero 
curve. 

If more than one bond has the same maturity date, zbtprice 
returns the mean zero rate for that maturity.

CurveDates An m-by-1 vector of unique maturity dates (as serial date 
numbers) that correspond to the zero rates in ZeroRates; m is 
the number of bonds of different maturity dates. These dates 
begin with the earliest maturity date and end with the latest 
maturity date Maturity in the Bonds matrix. 
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         101.125;
         103.125;
          99.375;
         101.0  ;
         101.25 ;
          96.375;
         102.75 ];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,... 
OutputCompounding)

which returns the zero curve at the maturity dates. Note the mean zero rate for 
the two bonds with the same maturity date*.

ZeroRates =

            0.0616
            0.0609
            0.0658
            0.0590
            0.0648
            0.0655*
            0.0606
            0.0601
            0.0642
            0.0621
            0.0627

CurveDates =

             729907  (serial date number for 01-Jun-1998)
             730364  (01-Sep-1999)
             730439  (15-Nov-1999)
             730500  (15-Jan-2000)
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             730667  (30-Jun-2000)
             730668  (01-Jul-2000)*
             730971  (30-Apr-2001)
             731032  (30-Jun-2001)
             731033  (01-Jul-2001)
             731321  (15-Apr-2002)
             731336  (30-Apr-2002)

See Also zbtyield and other functions for Term Structure of Interest Rates

References Fabozzi, Frank J. “The Structure of Interest Rates.”  Ch. 6 in Fabozzi, Frank J. 
and T. Dessa Fabozzi, eds.  The Handbook of Fixed Income Securities.  4th ed.  
New York:  Irwin Professional Publishing.  1995.

McEnally, Richard W. and James V. Jordan.  “The Term Structure of Interest 
Rates.”  Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit.  “Calculating Zero Coupon Rates.”  Swap and Derivative 
Financing.  Appendix to Ch. 8, pp. 219-225.  New York:  Irwin Professional 
Publishing.  1994.
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5zbtyieldPurpose Zero curve bootstrapping from coupon bond data given yield

Syntax [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle, 
OutputCompounding)

Arguments Bonds Coupon bond information used to generate the zero 
curve. An n-by-2 to n-by-6 matrix where each row 
describes a bond. The first two columns are required; 
the rest are optional but must be added in order. All 
rows in Bonds must have the same number of columns. 
Columns are 
[Maturity CouponRate Face Period Basis
EndMonthRule] where

Maturity Maturity date of the bond, as a serial 
date number. Use datenum to convert 
date strings to serial date numbers.

CouponRate Coupon rate of the bond, as a decimal 
fraction.

Face (Optional) Redemption or face value of 
the bond. Default = 100.

Period (Optional) Coupons per year of the 
bond, as an integer. Allowed values are 
0, 1, 2 (default), 3, 4, 6, and 12. 

Basis (Optional) Day-count basis of the bond. 
0 = actual/actual (default), 1 = 30/360 
(SIA), 2 = actual/360, 3 = actual/365, 
4 = 30/360 (PSA), 5 = 30/360 (ISDA), 
6 = 30/360 (European), 
7 = actual/365 (Japanese).
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Description [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle, 
OutputCompounding) uses the bootstrap method to return a zero curve given a 
portfolio of coupon bonds and their yields. A zero curve consists of the yields to 
maturity for a portfolio of theoretical zero-coupon bonds that are derived from 
the input Bonds portfolio. The bootstrap method that this function uses does 
not require alignment among the cash-flow dates of the bonds in the input 

EndMonthRule (Optional) End-of-month flag. This flag 
applies only when Maturity is an 
end-of-month date for a month having 
30 or fewer days. 0 = ignore flag, 
meaning that a bond’s coupon payment 
date is always the same day of the 
month. 1 = set flag (default), meaning 
that a bond’s coupon payment date is 
always the last day of the month.

Yields A column vector containing the yield to maturity of each 
bond in Bonds, respectively. The number of rows (n) 
must match the number of rows in Bonds.

Settle Settlement date, as a scalar serial date number. This 
represents time zero for deriving the zero curve, and it 
is normally the common settlement date for all the 
bonds.

OutputCompounding (Optional) A scalar that sets the compounding 
frequency per year for the output zero rates in 
ZeroRates. Allowed values are: 

1 annual compounding

2 semiannual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

-1 continuous compounding
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portfolio. It uses theoretical par bond arbitrage and yield interpolation to 
derive all zero rates. For best results, use a portfolio of at least 30 bonds evenly 
spaced across the investment horizon.

Examples Given data and yields to maturity for 12 coupon bonds, two with the same 
maturity date; and given the common settlement date

Bonds = [datenum('6/1/1998')   0.0475   100  2  0  0;
         datenum('7/1/2000')   0.06     100  2  0  0;
         datenum('7/1/2000')   0.09375  100  6  1  0;
         datenum('6/30/2001')  0.05125  100  1  3  1;
         datenum('4/15/2002')  0.07125  100  4  1  0;
         datenum('1/15/2000')  0.065    100  2  0  0;
         datenum('9/1/1999')   0.08     100  3  3  0;
         datenum('4/30/2001')  0.05875  100  2  0  0;
         datenum('11/15/1999') 0.07125  100  2  0  0;
         datenum('6/30/2000')  0.07     100  2  3  1;
         datenum('7/1/2001')   0.0525   100  2  3  0;
         datenum('4/30/2002')  0.07     100  2  0  0];

Yields = [0.0616
    0.0605
    0.0687
    0.0612
    0.0615

ZeroRates An m-by-1 vector of decimal fractions that are the implied zero 
rates for each point along the investment horizon represented 
by CurveDates; m is the number of bonds of different maturity 
dates. In aggregate, the rates in ZeroRates constitute a zero 
curve. 

If more than one bond has the same maturity date, zbtyield 
returns the mean zero rate for that maturity.

CurveDates An m-by-1 vector of unique maturity dates (as serial date 
numbers) that correspond to the zero rates in ZeroRates; m is 
the number of bonds of different maturity dates. These dates 
begin with the earliest maturity date and end with the latest 
maturity date Maturity in the Bonds matrix. Use datestr to 
convert serial date numbers to date strings.
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    0.0591
    0.0603
    0.0608
    0.0655
    0.0646
    0.0641
    0.0627];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function

[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,... 
OutputCompounding)

which returns the zero curve at the maturity dates. Note the mean zero rate for 
the two bonds with the same maturity date*.

ZeroRates =

    0.0616
    0.0575
    0.0692
    0.0613
    0.0616
    0.0596*
    0.0606
    0.0659
    0.0650
    0.0607
    0.0628

CurveDates =

             729907  (serial date number for 01-Jun-1998)
             730364  (01-Sep-1999)
             730439  (15-Nov-1999)
             730500  (15-Jan-2000)
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             730667  (30-Jun-2000)
             730668  (01-Jul-2000)*
             730971  (30-Apr-2001)
             731032  (30-Jun-2001)
             731033  (01-Jul-2001)
             731321  (15-Apr-2002)
             731336  (30-Apr-2002)  

See Also zbtprice and other functions for Term Structure of Interest Rates

References Fabozzi, Frank J. “The Structure of Interest Rates.”  Ch. 6 in Fabozzi, Frank J. 
and T. Dessa Fabozzi, eds.  The Handbook of Fixed Income Securities.  4th ed.  
New York:  Irwin Professional Publishing.  1995.

McEnally, Richard W. and James V. Jordan.  “The Term Structure of Interest 
Rates.”  Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit.  “Calculating Zero Coupon Rates.”  Swap and Derivative 
Financing.  Appendix to Ch. 8, pp. 219-225.  New York:  Irwin Professional 
Publishing.  1994.
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5zero2discPurpose Discount curve given a zero curve

Syntax [DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle, 
Compounding, Basis)

Arguments ZeroRates A number of bonds (NUMBONDS) by 1 vector of annualized 
zero rates, as decimal fractions. In aggregate, the rates 
constitute an implied zero curve for the investment 
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date 
numbers) that correspond to the zero rates. 

Settle A serial date number that is the common settlement date 
for the zero rates; i.e., the settlement date for the bonds 
from which the zero curve was bootstrapped.

Compounding (Optional) A scalar that indicates the compounding 
frequency per year used for annualizing the input zero 
rates in ZeroRates. Allowed values are: 

1 annual compounding

2 semiannual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

Basis (Optional) Day-count basis used for annualizing the 
input zero rates. 0 = actual/actual (default), 1 = 30/360 
(SIA), 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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Description [DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle, 
Compounding, Basis) returns a discount curve given a zero curve and its 
maturity dates.

Examples Given a zero curve over a set of maturity dates and a settlement date

ZeroRates = [0.0464
             0.0509
             0.0524
             0.0525
             0.0531
             0.0525
             0.0530
             0.0531
             0.0549
             0.0536];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')
              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

 The zero curve was compounded daily on an actual/365 basis.

DiscRates A NUMBONDS-by-1 vector of discount factors, as decimal 
fractions. In aggregate, the factors in constitute a discount 
curve for the investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date 
numbers) that correspond to the discount rates. This vector is 
the same as the input vector CurveDates.
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InputCompounding = 365;
InputBasis = 3;

Execute the function

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,... 
Settle, Compounding, Basis)

which returns the discount curve DiscRates at the maturity dates CurveDates.

DiscRates =

      0.9996
      0.9947
      0.9896
      0.9866
      0.9826
      0.9787
      0.9745
      0.9665
      0.9552
      0.9466

CurveDates =

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

For readability, ZeroRates and DiscRates are shown here only to the basis 
point. However, MATLAB computed them at full precision. If you enter 
ZeroRates as shown, DiscRates may differ due to rounding.

See Also disc2zero and other functions for Term Structure of Interest Rates
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5zero2fwdPurpose Forward curve given a zero curve

Syntax [ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, 
Settle, Compounding, Basis

Arguments ZeroRates A number of bonds (NUMBONDS) by 1 vector of annualized 
zero rates, as decimal fractions. In aggregate, the rates 
constitute an implied zero curve for the investment 
horizon represented by CurveDates. The first element 
pertains to forward rates from the settlement date to the 
first curve date.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date 
numbers) that correspond to the zero rates. 

Settle A serial date number that is the common settlement date 
for the zero rates.

Compounding (Optional) A scalar that sets the compounding frequency 
per year used to annualize the input zero rates and the 
output implied forward rates.Allowed values are: 

1 annual compounding

2 semiannual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

Basis (Optional) Day-count basis used to construct the input 
zero and output implied forward rate curves. 
0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).
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Description [ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, 
Settle, Compounding, Basis) returns an implied forward rate curve given a 
zero curve and its maturity dates.

Examples Given a zero curve over a set of maturity dates, a settlement date, and a 
compounding rate, compute the forward rate curve.

ZeroRates = [0.0458
             0.0502
             0.0518
             0.0519
             0.0524
             0.0519
             0.0523
             0.0525
             0.0541
             0.0529];

CurveDates = [datenum('06-Nov-2000')
             datenum('11-Dec-2000')
             datenum('15-Jan-2001')
             datenum('05-Feb-2001')
             datenum('04-Mar-2001')
             datenum('02-Apr-2001')
             datenum('30-Apr-2001')
             datenum('25-Jun-2001')
             datenum('04-Sep-2001')
             datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
Compounding = 1;

Execute the function

ForwardRates A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the 
rates in ForwardRates constitute a forward curve over the 
dates in CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date 
numbers) that correspond to the forward rates. This vector is 
the same as the input vector CurveDates. 
5-337



zero2fwd
[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,... 
Settle, Compounding)

which returns the forward rate curve ForwardRates at the maturity dates 
CurveDates.

ForwardRates =

    0.0458
    0.0506
    0.0535
    0.0522
    0.0541
    0.0498
    0.0544
    0.0531
    0.0594
    0.0476

CurveDates =

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

For readability, ZeroRates and ForwardRates are shown here only to the basis 
point. However, MATLAB computed them at full precision. If you enter 
ZeroRates as shown, ForwardRates may differ due to rounding.

See Also fwd2zero and other functions for Term Structure of Interest Rates
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5zero2pyldPurpose Par yield curve given a zero curve

Syntax [ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle,
     Compounding, Basis, OutputCompounding)

Arguments ZeroRates A number of bonds (NUMBONDS) by 1 vector of annualized 
zero rates, as decimal fractions. In aggregate, the rates 
constitute an implied zero curve for the investment 
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date 
numbers) that correspond to the zero rates. 

Settle A serial date number that is the common settlement date 
for the zero rates.

Compounding (Optional) A scalar that sets the rate at which the implied 
zero rates are compounded when annualized. Allowed 
values are: 

1 annual compounding

2 semiannual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

Basis (Optional) Day-count basis used to annualize the implied 
zero rates. 0 = actual/actual (default), 1 = 30/360 (SIA), 
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 
5 = 30/360 (ISDA), 6 = 30/360 (European), 
7 = actual/365 (Japanese).

OutputCompounding (Optional) Value representing the rate at which the par 
rates are compounded. Default = Compounding.
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Description [ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle, 
Compounding, Basis, OutputCompounding) returns a par yield curve given a 
zero curve and its maturity dates.

Examples Given 

• A zero curve over a set of maturity dates and 

• A settlement date

• Annual compounding for the input zero curve and monthly compounding for 
the output par rates

compute a par yield curve.

ZeroRates = [0.0457
0.0487
 0.0506
 0.0507
0.0505
0.0504
0.0506
0.0516
0.0539
0.0530];

CurveDates = [datenum('06-Nov-2000')
              datenum('11-Dec-2000')
              datenum('15-Jan-2001')
              datenum('05-Feb-2001')
              datenum('04-Mar-2001')
              datenum('02-Apr-2001')
              datenum('30-Apr-2001')

ParRates A NUMBONDS-by-1 vector of annualized par yields, as decimal 
fractions. (Par yields = coupon rates.) In aggregate, the yield 
rates in ParRates constitute a par yield curve for the 
investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date 
numbers) that correspond to the par yield rates. This vector is 
the same as the input vector CurveDates. 
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              datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');
Compounding = 1;
OutputCompounding = 12;

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,... 
Settle, Compounding, [] , OutputCompounding)

ParRates =

    0.0479
    0.0511
    0.0530
    0.0531
    0.0526
    0.0524
    0.0525
    0.0534
    0.0555
    0.0543

CurveDates =

      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167

For readability, ZeroRates and ParRates are shown only to the basis point. 
However, MATLAB computed them at full precision. If you enter ZeroRates as 
shown, ParRates may differ due to rounding.
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See Also pyld2zero and other functions for Term Structure of Interest Rates
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For the well-known algorithms and formulas used in the Financial Toolbox 
(such as how to compute a loan payment given principal, interest rate, and 
length of the loan), no references are given here. The references here pertain to 
less common formulas.

Bond Pricing and Yields
The pricing and yield formulas for fixed-income securities come from:

Mayle, Jan.  Standard Securities Calculation Methods.  New York:  Securities 
Industry Association, Inc.  Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9.  Vol. 2, 
1994, ISBN 1-882936-02-7.

In many cases these formulas compute the price of a security given yield, dates, 
rates, and other data. These formulas are nonlinear, however; so when solving 
for an independent variable within a formula, the Financial Toolbox uses 
Newton’s method. See any elementary numerical methods textbook for the 
mathematics underlying Newton’s method.

Term Structure of Interest Rates
The formulas and methodology for term structure functions come from:

Fabozzi, Frank J. “The Structure of Interest Rates.”  Ch. 6 in Fabozzi, Frank J. 
and T. Dessa Fabozzi, eds.  The Handbook of Fixed Income Securities.  4th ed.  
New York:  Irwin Professional Publishing.  1995.  ISBN 0-7863-0001-9.

McEnally, Richard W. and James V. Jordan.  “The Term Structure of Interest 
Rates.”  Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit.  “Calculating Zero Coupon Rates.”  Swap and Derivative 
Financing.  Appendix to Ch. 8, pp. 219-225.  New York:  Irwin Professional 
Publishing.  1994.  ISBN 1-55738-542-4.

Derivatives Pricing and Yields
The pricing and yield formulas for derivative securities come from:

Chriss, Neil A. “Black-Scholes and Beyond: Option Pricing Models,” Chicago: 
Irwin Professional Publishing. 1997. ISBN 0-7863-1025-1.

Cox, J.; S. Ross; and M. Rubenstein, “Option Pricing: A Simplified Approach”, 
Journal of Financial Economics 7, Sept. 1979, pp. 229 - 263



Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th 
edition, 2003, ISBN 0-13-009056-5

Portfolio Analysis
The Markowitz model is used for portfolio analysis computations. For a 
discussion of this model see Chapter 7 of:

Bodie, Zvi, Alex Kane, and Alan J. Marcus.  Investments.  Burr Ridge, IL:  
Irwin.  2nd. ed., 1993, ISBN 0-256-08342-8.

To solve the quadratic minimization problem associated with finding the 
efficient frontier, the toolbox uses the fmincon function (finds the constrained 
minimum of a function of several variables) in the MATLAB Optimization 
Toolbox. See that toolbox documentation for more details.

Financial Statistics
The discussion of computing statistical values for portfolios containing missing 
data elements derives from the following references:

Little, Roderick J. A. and Donald B. Rubin, Statistical Analysis with Missing 
Data, 2nd ed., John Wiley & Sons, Inc., 2002.

Meng, Xiao-Li and Donald B. Rubin, “Maximum Likelihood Estimation via the 
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Sexton, Joe and Anders Rygh Swensen, “ECM Algorithms That Converge at 
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Glossary
Active return Amount of return achieved in excess of the return produced by an appropriate 
benchmark (e.g., an index portfolio).

Active risk Standard deviation of the active return. Also known as the tracking error.

American option An option that can be exercised any time until its expiration date. Contrast 
with European option.

Amortization Reduction in value of an asset over some period for accounting purposes. 
Generally used with intangible assets. Depreciation is the term used with fixed 
or tangible assets.

Annuity A series of payments over a period of time. The payments are usually in equal 
amounts and usually at regular intervals such as quarterly, semi-annually, or 
annually.

Arbitrage The purchase of securities on one market for immediate resale on another 
market in order to profit from a price or currency discrepancy.

Basis point One hundredth of one percentage point, or 0.0001.

Beta The price volatility of a financial instrument relative to the price volatility of a 
market or index as a whole. Beta is most commonly used with respect to 
equities. A high-beta instrument is riskier than a low-beta instrument.

Binomial model A method of pricing options or other equity derivatives in which the probability 
over time of each possible price follows a binomial distribution. The basic 
assumption is that prices can move to only two values (one higher and one 
lower) over any short time period.

Black-Scholes 
model 

The first complete mathematical model for pricing options, developed by 
Fischer Black and Myron Scholes. It examines market price, strike price, 
volatility, time to expiration, and interest rates. It is limited to only certain 
kinds of options.

Bollinger band 
chart

A financial chart that plots actual asset data along with three other bands of 
data: the upper band is two standard deviations above a user-specified moving 
average; the lower band is two standard deviations below that moving average; 
and the middle band is the moving average itself.

Bootstrapping, 
bootstrap method

An arithmetic method for backing an implied zero curve out of the par yield 
curve.

Building a 
binomial tree

For a binomial option model: plotting the two possible short-term price-changes 
values, and then the subsequent two values each, and then the subsequent two 
values each, and so on over time, is known as “building a binomial tree.” See 
Binomial model.
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Call a. An option to buy a certain quantity of a stock or commodity for a specified 
price within a specified time. See Put. b. A demand to submit bonds to the 
issuer for redemption before the maturity date. c. A demand for payment of a 
debt. d. A demand for payment due on stock bought on margin.

Callable bond A bond that allows the issuer to buy back the bond at a predetermined price at 
specified future dates. The bond contains an embedded call option; i.e., the 
holder has sold a call option to the issuer. See Puttable bond.

Candlestick chart A financial chart usually used to plot the high, low, open, and close price of a 
security over time. The body of the “candle” is the region between the open and 
close price of the security. Thin vertical lines extend up to the high and down 
to the low, respectively. If the open price is greater than the close price, the 
body is empty. If the close price is greater than the open price, the body is filled. 
See High-low-close chart.

Cap Interest-rate option that guarantees that the rate on a floating-rate loan will 
not exceed a certain level.

Cash flow Cash received and paid over time.

Collar Interest-rate option that guarantees that the rate on a floating-rate loan will 
not exceed a certain upper level nor fall below a lower level. It is designed to 
protect an investor against wide fluctuations in interest rates.

Convexity A measure of the rate of change in duration; measured in time. The greater the 
rate of change, the more the duration changes as yield changes.

Correlation The simultaneous change in value of two random numeric variables.

Correlation 
coefficient

A statistic in which the covariance is scaled to a value between minus one 
(perfect negative correlation) and plus one (perfect positive correlation).

Coupon Detachable certificate attached to a bond that shows the amount of interest 
payable at regular intervals, usually semi-annually.Originally coupons were 
actually attached to the bonds and had to be cut off or “clipped” to redeem them 
and receive the interest payment.

Coupon dates The dates when the coupons are paid. Typically a bond pays coupons annually 
or semi-annually.

Coupon rate The nominal interest rate that the issuer promises to pay the buyer of a bond.
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Covariance A measure of the degree to which returns on two assets move in tandem. A 
positive covariance means that asset returns move together; a negative 
covariance means they vary inversely.

Delta The rate of change of the price of a derivative security relative to the price of 
the underlying asset; i.e., the first derivative of the curve that relates the price 
of the derivative to the price of the underlying security.

Depreciation Reduction in value of fixed or tangible assets over some period for accounting 
purposes. See Amortization.

Derivative A financial instrument that is based on some underlying asset. For example, 
an option is a derivative instrument based on the right to buy or sell an 
underlying instrument.

Discount curve The curve of discount rates vs. maturity dates for bonds.

Duration The expected life of a fixed-income security considering its coupon yield, 
interest payments, maturity, and call features. As market interest rates rise, 
the duration of a financial instrument decreases. See Macaulay duration.

Efficient frontier A graph representing a set of portfolios that maximizes expected return at each 
level of portfolio risk. See Markowitz model.

Elasticity See Lambda.

European option An option that can be exercised only on its expiration date. Contrast with 
American option.

Exercise price The price set for buying an asset (call) or selling an asset (put). The strike price.

Face value The maturity value of a security. Also known as par value, principal value, or 
redemption value.

Fixed-income 
security 

A security that pays a specified cash flow over a specific period. Bonds are 
typical fixed-income securities.

Floor Interest-rate option that guarantees that the rate on a floating-rate loan will 
not fall below a certain level.

Forward curve The curve of forward interest rates vs. maturity dates for bonds.

Forward rate The future interest rate of a bond inferred from the term structure, especially 
from the yield curve of zero-coupon bonds, calculated from the growth factor of 
an investment in a zero held until maturity.
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Future value The value that a sum of money (the present value) earning compound interest 
will have in the future.

Gamma The rate of change of delta for a derivative security relative to the price of the 
underlying asset; i.e., the second derivative of the option price relative to the 
security price.

Greeks Collectively, “greeks” refer to the financial measures delta, gamma, lambda, 
rho, theta, and vega, which are sensitivity measures used in evaluating 
derivatives.

Hedge A securities transaction that reduces or offsets the risk on an existing 
investment position.

High-low-close 
chart

A financial chart usually used to plot the high, low, open, and close price of a 
security over time. Plots are vertical lines whose top is the high, bottom is the 
low, open is a short horizontal tick to the left, and close is a short horizontal 
tick to the right.

Implied volatility For an option, the variance that makes a call option price equal to the market 
price. Given the option price, strike price, and other factors, the Black-Scholes 
model computes implied volatility.

Internal rate of 
return

a. The average annual yield earned by an investment during the period held. 
b. The effective rate of interest on a loan. c. The discount rate in discounted 
cash flow analysis. d. The rate that adjusts the value of future cash receipts 
earned by an investment so that interest earned equals the original cost. See 
Yield to maturity.

Issue date The date a security is first offered for sale. That date usually determines when 
interest payments, known as coupons, are made.

Ito process Statistical assumptions about the behavior of security prices. For details, see 
the book by Hull listed in Appendix A, “Bibliography.”

Lambda The percentage change in the price of an option relative to a 1% change in the 
price of the underlying security. Also known as Elasticity.

Long position Outright ownership of a security or financial instrument. The owner expects 
the price to rise in order to make a profit on some future sale.

Long rate The yield on a zero-coupon Treasury bond.

Macaulay 
duration 

A widely used measure of price sensitivity to yield changes developed by 
Frederick Macaulay in 1938. It is measured in years and is a weighted 
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average-time-to-maturity of an instrument. The Macaulay duration of an 
income stream, such as a coupon bond, measures how long, on average, the 
owner waits before receiving a payment. It is the weighted average of the times 
payments are made, with the weights at time T equal to the present value of 
the money received at time T.

Markowitz model A model for selecting an optimum investment portfolio, devised by H. M. 
Markowitz. It uses a discrete-time, continuous-outcome approach for modeling 
investment problems, often called the mean-variance paradigm. See Efficient 
frontier.

Maturity date The date when the issuer returns the final face value of a bond to the buyer.

Mean a. A number that typifies a set of numbers, such as a geometric mean or an 
arithmetic mean. b. The average value of a set of numbers.

Modified 
duration 

The Macaulay duration discounted by the per-period interest rate; i.e., divided 
by (1+rate/frequency). 

Monte-Carlo 
simulation 

A mathematical modeling process. For a model that has several parameters 
with statistical properties, pick a set of random values for the parameters and 
run a simulation. Then pick another set of values, and run it again. Run it 
many times (often 10,000 times) and build up a statistical distribution of 
outcomes of the simulation. This distribution of outcomes is then used to 
answer whatever question you are asking.

Moving average A price average that is adjusted by adding other parametrically determined 
prices over some time period.

Moving-averages 
chart

A financial chart that plots leading and lagging moving averages for prices or 
values of an asset.

Normal 
(bell-shaped) 
distribution 

In statistics, a theoretical frequency distribution for a set of variable data, 
usually represented by a bell-shaped curve symmetrical about the mean.

Odd first or last 
period

Fixed-income securities may be purchased on dates that do not coincide with 
coupon or payment dates. The length of the first and last periods may differ 
from the regular period between coupons, and thus the bond owner is not 
entitled to the full value of the coupon for that period. Instead, the coupon is 
pro-rated according to how long the bond is held during that period.
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Option A right to buy or sell specific securities or commodities at a stated price 
(exercise or strike price) within a specified time. An option is a type of 
derivative.

Par value The maturity or face value of a security or other financial instrument.

Par yield curve The yield curve of bonds selling at par, or face, value.

Point and figure 
chart

A financial chart usually used to plot asset price data. Upward price 
movements are plotted as X's and downward price movements are plotted as 
O's.

Present value Today’s value of an investment that yields some future value when invested to 
earn compounded interest at a known interest rate.; i.e., the future value at a 
known period in time discounted by the interest rate over that time period.

Principal value See Par value.

Purchase price Price actually paid for a security. Typically the purchase price of a bond is not 
the same as the redemption value.

Put An option to sell a stipulated amount of stock or securities within a specified 
time and at a fixed exercise price. See Call.

Puttable bond A bond that allows the holder to redeem the bond at a predetermined price at 
specified future dates. The bond contains an embedded put option; i.e., the 
holder has bought a put option. See Callable bond.

Quant A quantitative analyst; someone who does numerical analysis of financial 
information in order to detect relationships, disparities, or patterns that can 
lead to making money.

Redemption 
value

See Par value.

Regression 
analysis 

Statistical analysis techniques that quantify the relationship between two or 
more variables. The intent is quantitative prediction or forecasting, 
particularly using a small population to forecast the behavior of a large 
population.

Rho The rate of change in a derivative’s price relative to the underlying security’s 
risk-free interest rate.

Sensitivity The “what if” relationship between variables; the degree to which changes in 
one variable cause changes in another variable. A specific synonym is 
volatility.
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Settlement date The date when money first changes hands; i.e., when a buyer actually pays for 
a security. It need not coincide with the issue date.

Short rate The annualized one-period interest rate.

Short sale, short 
position

The sale of a security or financial instrument not owned, in anticipation of a 
price decline and making a profit by purchasing the instrument later at a lower 
price, and then delivering the instrument to complete the sale. See Long 
position.

Spot curve, spot 
yield curve 

See Zero curve.

Spot rate The current interest rate appropriate for discounting a cash flow of some given 
maturity.

Spread For options, a combination of call or put options on the same stock with 
differing exercise prices or maturity dates.

Standard 
deviation

A measure of the variation in a distribution, equal to the square root of the 
arithmetic mean of the squares of the deviations from the arithmetic mean; the 
square root of the variance.

Stochastic Involving or containing a random variable or variables; involving chance or 
probability.

Straddle A strategy used in trading options or futures. It involves simultaneously 
purchasing put and call options with the same exercise price and expiration 
date, and it is most profitable when the price of the underlying security is very 
volatile.

Strike Exercise a put or call option.

Strike price See Exercise price.

Swap A contract between two parties to exchange cash flows in the future according 
to some formula.

Swaption A swap option; an option on an interest-rate swap. The option gives the holder 
the right to enter into a contracted interest-rate swap at a specified future date. 
See Swap.

Term structure The relationship between the yields on fixed-interest securities and their 
maturity dates. Expectation of changes in interest rates affects term structure, 
as do liquidity preferences and hedging pressure. A yield curve is one 
representation in the term structure.
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Theta The rate of change in the price of a derivative security relative to time. Theta 
is usually very small or negative since the value of an option tends to drop as 
it approaches maturity.

Tracking error See active risk.

Treasury bill Short-term U.S. government security issued at a discount from the face value 
and paying the face value at maturity.

Treasury bond Long-term debt obligation of the U.S. government that makes coupon 
payments semi-annually and is sold at or near par value in $1000 
denominations or higher. Face value is paid at maturity.

Variance The dispersion of a variable. The square of the standard deviation.

Vega The rate of change in the price of a derivative security relative to the volatility 
of the underlying security. When vega is large the security is sensitive to small 
changes in volatility.

Volatility a. Another general term for sensitivity. b. The standard deviation of the 
annualized continuously compounded rate of return of an asset. c. A measure 
of uncertainty or risk.

Yield a. Measure of return on an investment, stated as a percentage of price. Yield 
can be computed by dividing return by purchase price, current market value, 
or other measure of value. b. Income from a bond expressed as an annualized 
percentage rate. c. The nominal annual interest rate that gives a future value 
of the purchase price equal to the redemption value of the security. Any coupon 
payments determine part of that yield.

Yield curve Graph of yields (vertical axis) of a particular type of security versus the time to 
maturity (horizontal axis). This curve usually slopes upward, indicating that 
investors usually expect to receive a premium for securities that have a longer 
time to maturity. The benchmark yield curve is for U.S. Treasury securities 
with maturities ranging from three months to 30 years. See Term structure.

Yield to maturity A measure of the average rate of return that will be earned on a bond if held to 
maturity.

Zero curve, 
zero-coupon yield 
curve 

A yield curve for zero-coupon bonds; zero rates versus maturity dates. Since the 
maturity and duration (Macaulay duration) are identical for zeros, the zero 
curve is a pure depiction of supply/demand conditions for loanable funds across 
a continuum of durations and maturities. Also known as spot curve or spot 
yield curve.
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Zero-coupon 
bond, or Zero 

A bond that, instead of carrying a coupon, is sold at a discount from its face 
value, pays no interest during its life, and pays the principal only at maturity.
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charting 2-12
first business date of month 5-186
first coupon date 2-20
fixed declining-balance depreciation 2-18, 5-157
fixed periodic payments

future value with 5-193
ex-6
fixed-income securities
cash-flow dates 5-85
Macaulay and modified durations for 2-29
pricing 2-28
pricing and computing yields for 2-20
terminology 2-20
yield functions for 2-28

fixed-income sensitivities 2-29
formats

bank 5-123
date 2-4

formatting currency and charting financial data 
2-12

forward curve
from zero curve 5-336
to zero curve 5-196

frac2cur 5-188
fraction of

coupon period 5-19
year between dates 5-318

fractional currency 5-122, 5-188
frontcon 3-5, 5-189
frontier

plotting an efficient 4-19
frontier, efficient 3-5
function

return arguments 1-20
future month, date of day in 5-130
future value 2-17, 5-29

of discounted security 5-192
of varying cash flow 5-194
with fixed periodic payments 5-193

fvdisc 5-192
fvfix 5-193
fvvar 5-194
fwd2zero 5-196
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G
gamma 2-33
general declining-balance depreciation 2-18, 

5-158
generating and referencing matrix elements 1-6
graphics

producing 4-19
three-dimensional 4-11

greek-neutral portfolios, constructing 4-12
greeks 2-33

neutrality 4-12

H
handling and converting dates 2-4
hedging 4-3

a bond portfolio against duration and convexity 
4-6

high, low, open, close chart 5-199
highlow 5-199
holidays 2-10
holidays 5-200
holidays and nontrading days 5-200
hour 5-201
hour of date or time 5-201

I
identity matrix 1-13
iid (independent identically-distributed data) 

5-170
implied volatility 2-34

Black-Scholes 5-40
independent identically-distributed data 5-170
indices

of date numbers in matrix 5-129
of nonrepeating integers in matrix 5-129

indifference curve 3-8
inner dimension rule 1-8
input

conversions 2-5
string 1-19

interest 5-25
accrued 5-22, 5-24
on loan 2-18

interest rate swap 4-15
interest rates

arguments 1-21
Black-Scholes sensitivity to change 5-46
of annuity, periodic 5-28
rate of return 2-16
risk-free 4-24
sensitivity of bond prices to changes in 4-3
term structure 2-2, 2-30

internal rate of return 5-202
for nonperiodic cash flow 5-314
modified 5-212

inversion, matrix 1-13
investment horizon 2-31
irr 5-202
isbusday 5-203
issue date 2-20
Ito process 2-34

L
lagging and leading moving averages chart 5-216
lambda 2-33
last

business date of month 5-205
date of month 5-182
day of month 5-183
weekday in month 5-207

last coupon date 2-20
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lbusdate 5-205
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5-216
left division 1-16
leverage of an option 5-42
linear algebra 1-8, 1-13
linear equations 4-7

solving simultaneous 1-13
system of 1-13

loan
interest on 2-18
payment with odd first period 5-223
periodic payment of 5-224

lweekdate 5-207

M
m2xdate 5-209
Macaulay duration 4-3

for fixed-income securities 2-29
MATLAB

date number
from Excel date number 5-312
to Excel date number 5-209

matrices
adding and subtracting 1-7
as arguments, limitations 1-21
dividing 1-13
enlarging 1-5
multiplying 1-8, 1-11
multiplying vectors and 1-10
of string input 1-19
singular 1-13
square 1-13
transposing 1-6

matrix 1-4
adding or subtracting a scalar 1-8
ex-8
algebra refresher 1-7
covariance 5-184
elements

generating 1-6
referencing 1-4

identity 1-13
indices of date numbers 5-129
indices of integers in 5-129
inversion 1-13
multiplying by a scalar 1-12
numbers and strings in a 1-20

maturity
price with interest at 5-268
yield of a security paying interest at 5-320

maturity date 2-21
maximum likelihood estimate (MLE) 5-175
minute 5-211
minute of date or time 5-211
mirr 5-212
missing data 3-24
MLE (maximum likelihood estimate) 5-175
modified duration 4-3, 5-88

for fixed-income securities 2-29
modified internal rate of return 5-212
month

add, to starting date 5-130
date of specific weekday 5-219
day of 5-142
first business date of 5-186
last business date 5-205
last date of 5-182
last day of 5-183

month 5-214
months

last weekday in 5-207
number of months between dates 5-215

months 5-215
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movavg 5-216
moving averages chart 5-216
multiplying

a matrix by a scalar 1-12
matrices 1-8
two matrices 1-11
vectors 1-8
vectors and matrices 1-10

N
names

variable 1-7
NaN 2-25
negative cash flows 2-16
Newton’s method 2-28
next

business day 2-10
coupon date after settlement date 5-99
or previous business day 5-76

nominal rate of return 5-217
nomrr 5-217
nontrading days 2-10, 5-200
notation 1-4

row, column 1-4
now 5-218
number of

days in year 5-317
periods to obtain value 5-29
whole months between dates 5-215

numbers
and strings in a matrix 1-20
date 2-4

nweekdate 5-219

O
observation 5-172
odd first period

payment of loan or annuity with 5-223
operating element-by-element 1-17
operations, array 1-17
opprofit 5-221
optimal portfolio 3-2
option

leverage of 5-42
plotting sensitivities of 4-21
plotting sensitivities of a portfolio of 4-23
pricing

Black’s model 5-35
profit 5-221

output conversions, date 2-7

P
par value 2-21
par yield curve

from zero curve 5-339
to zero curve 5-274

past month, date of day in 5-130
payadv 5-222
payment

of loan or annuity with odd first period 5-223
periodic, given number of advance payments 

5-222
periodic, of loan or annuity 5-224
uniform, equal to varying cash flow 5-225

payodd 5-223
payper 5-224
payuni 5-225
pcalims 5-226
pcgcomp 5-229
pcglims 5-231
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pcpval 5-234
period 2-21
periodic interest rate of annuity 5-28
periodic payment

future value with fixed 5-193
given advance payments 5-222
of loan or annuity 5-224
present value with fixed 5-271

pivot year 5-133
plotting

efficient frontier 4-19
sensitivities of a portfolio of options 4-23
sensitivities of an option 4-21

point and figure chart 5-236
pointfig 5-236
portalloc 3-9, 3-10, 5-237
portcons 3-14, 5-240
portfolio

convexity 4-4, 4-6
duration 4-4, 4-6
expected rate of return 5-258
of options, plotting sensitivities of 4-23
optimal 3-2
optimization 3-3
risks, returns, and weights

randomized 5-247
selection 3-8

portfolios
analyzing 2-37
of European stock options

constructing greek-neutral 4-12
portopt 5-244
portrand 5-247
portsim 5-248
portstats 5-258
portvrisk 5-260
prbyzero 5-262
ex-10
prdisc 5-266
present value 2-17

of varying cash flow 5-272
with fixed periodic payments 5-271

previous quasi coupon date 5-110
price

change, Black-Scholes sensitivity to underlying 
5-37

of discounted security 5-266
of Treasury bill 5-270
volatility, Black-Scholes sensitivity to 

underlying 5-50
with interest at maturity 5-268

pricing
and analyzing equity derivatives 2-33
and computing yields for fixed-income securities 

2-20
fixed-income securities 2-28

principal 5-25
prmat 5-268
profit, option 5-221
prtbill 5-270
purchase price 2-21
put and call pricing

binomial 5-31
Black-Scholes 5-44

pvfix 5-271
pvvar 5-272
pyld2zero 5-274

Q
quasi coupon date

previous 5-110
quasi-coupon dates 2-20
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R
randomized portfolio risks, returns, and weights 

5-247
rate of a security, discount 5-165
rate of return 2-16

after-tax 5-282
effective 5-181
internal 5-202
internal for nonperiodic cash flow 5-314
modified internal 5-212
nominal 5-217
portfolio expected 5-258

record 5-172
redemption value 2-21
reference date 2-27
referencing matrix elements 1-4, 1-6
remaining depreciable value 2-18, 5-159
ret2tick 5-278
return arguments, function 1-20
rho 2-33
risk aversion 3-8
risk-free interest rates 4-24
risks

returns, and weights
randomized portfolio 5-247

row, column notation 1-4
row-by-column 1-4

S
scalar 1-4

adding or subtracting 1-8
multiplying a matrix by 1-12

second 5-281
seconds of date or time 5-281
securities industry association 2-20
sensitivity

fixed-income 2-29
measures for derivatives 2-33
of a portfolio of options, plotting 4-23
of an option, plotting 4-21
of bond prices to changes in interest rates 4-3
of cash flow 2-18
to

interest rate change, Black-Scholes 5-46
to time-until-maturity change, Black-Scholes 

5-48
to underlying delta change, Black-Scholes 

5-39
to underlying price change, Black-Scholes 

5-37
to underlying price volatility, Black-Scholes 

5-50
visualizing to parallel shifts in the yield curve 

4-8
settlement date 2-20

coupon period containing 5-119
days between previous coupon date and 5-116
days between, and coupon date 5-113
next coupon date after 5-99

SIA 2-20
compatibility 2-20
default parameter values 2-24
framework 2-23
order of precedence 2-27
use of nonlinear formulas 2-28

SIA conventions 2-20
single quotes 1-19
singular matrices 1-13
solving

sample problems with the toolbox 4-2
spreadsheets 1-4
square matrices 1-13
straight-line depreciation 2-18, 5-161
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strings
and numbers in a matrix 1-20
date 2-4, 5-136
input, matrices of 1-19
stored as character array 1-19

subtracting
a scalar and a matrix 1-8
matrices 1-7

sum of years’ digits depreciation 2-18, 5-160
swap 4-15
synch date 2-27
synchronization date 2-27
system of linear equations 1-13

T
taxedrr 5-282
tbl2bond 5-283
term structure 2-2, 2-30, 4-3, 5-162, 5-196, 5-274, 

5-283, 5-323, 5-328, 5-333, 5-336, 5-339
parameters from Treasury bond parameters 

5-294
terminology, fixed-income securities 2-20
theta 2-34
thirdwednesday 5-285
thirtytwo2dec 5-287
three-dimensional graphics 4-11
tick labels 5-126
tick2ret 5-288
time

current 2-8, 5-218
hour of 5-201
minute of 5-211
seconds of 5-281

time factor 5-93
time2date 5-290
time-until-maturity change
ex-12
Black-Scholes sensitivity to 5-48
today 5-293
tr2bonds 5-294
tracking error 3-20
tracking error efficient frontier 3-20
transposing matrices 1-6
Treasury bill 2-30

bond equivalent yield for 5-30
parameters to Treasury bond parameters 5-283
price of 5-270
yield of 5-322

Treasury bond 2-30
parameters

from Treasury bill parameters 5-283
to term-structure parameters 5-294

U
ugarch 5-297
ugarchllf 5-299
ugarchpred 5-301
ugarchsim 5-304
uniform payment equal to varying cash flow 5-225

V
variable names 1-7
vector 1-4

date 5-139
of dates 1-20

vectors
as arguments, limitations 1-21
computing dot products of 1-10
multiplying 1-8
multiplying matrices and 1-10

vega 2-34
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visualizing the sensitivity of a bond portfolio’s 
price to parallel shifts in the yield curve 
4-8

volatility
Black-Scholes implied 5-40
implied 2-34

W
week, day of 5-309
weekday

date of specific, in month 5-219
weekday 5-309
workday, date of future or past 5-141
working days between dates 5-311
wrkdydif 5-311

X
x2mdate 5-312
xirr 5-314

Y
year

fraction of between dates 5-318
number of days in 5-317
of date 5-316

year 5-316
yeardays 5-317
yearfrac 5-318
yield

curve 4-3, 4-6
visualizing sensitivity of bond portfolio’s 

price to parallel shifts in 4-8
for Treasury bill, bond equivalent 5-30
functions for fixed-income securities 2-28

of discounted security 5-319
of security paying interest at maturity 5-320
of Treasury bill 5-322

yields
for fixed-income securities, pricing and 

computing 2-20
yield-to-maturity 2-21
ylddisc 5-319
yldmat 5-320
yldtbill 5-322

Z
zbtprice 5-323
zbtyield 5-328
zero curve 5-294, 5-324, 5-329

from coupon bond prices 5-323
from coupon bond yields 5-328
from discount curve 5-162
from forward curve 5-196
from par yield curve 5-274
to discount curve 5-333
to forward curve 5-336
to par yield curve 5-339

zero2disc 5-333
zero2fwd 5-336
zero2pyld 5-339
zero-coupon bond 5-163, 5-324, 5-329
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