Financial Toolbox For Use with MATLAB[®]

Computation

Visualization

Programming

User's Guide

Version 2

How to Contact The MathWorks:

	www.mathworks.com comp.soft-sys.matlab	Web Newsgroup
@	support@mathworks.com suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com	Technical support Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information
1	508-647-7000	Phone
	508-647-7001	Fax
	The MathWorks, Inc. 3 Apple Hill Drive	Mail

Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Financial Toolbox User's Guide

© COPYRIGHT 1995 - 2005 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

October 1995 January 1998 January 1999 November 2000 May 2003 June 2004 August 2004 September 2005	First printing Second printing Third printing Fourth printing Online only Online only Online only Fifth printing	Revised for Version 1.1 Revised for Version 2.0 (Release 11) Revised for Version 2.1.2 (Release 12) Revised for Version 2.3 (Release 13) Revised for Version 2.4 (Release 14) Revised for Version 2.4.1 (Release 14+) Revised for Version 2.5 (Release 14SP3)
---	---	---

Getting Started

What Is the Financial Toolbox? 1-	-2
Using Matrix Functions for Finance 1.	-4
Key Definitions 1.	-4
Referencing Matrix Elements 1.	-4
Transposing Matrices 1.	-6
Matrix Algebra Refresher 1.	-7
Adding and Subtracting Matrices 1.	-7
Multiplying Matrices 1.	-8
Dividing Matrices 1-1	13
Solving Simultaneous Linear Equations 1-1	13
Operating Element-by-Element 1-1	17
Function Input/Output Arguments 1-1	18
Input Arguments 1-1	18
Function Output Arguments 1-2	20
Interest Rate Arguments 1-2	21

Tutorial

2

1

Handling and Converting Dates 2	-4
Date Formats 24	-4
Date Conversions 2	-5
Current Date and Time 2	-8
Determining Dates 2	-9
Formatting Currency 2-1	12
Charting Financial Data 2-1	13

High-Low-Close Chart Example	. 2-13
Bollinger Chart Example	. 2-14
Analyzing and Computing Cash Flows	
Interest Rates/Rates of Return	. 2-16
Present or Future Values	. 2-17
Depreciation	. 2-18
Annuities	. 2-18
Pricing and Computing Yields for Fixed-Income	
Securities	. 2-20
Terminology	
SIA Framework	. 2-23
SIA Default Parameter Values	. 2-24
SIA Coupon Date Calculations	0 07
	. 2-21
SIA Semiannual Yield Conventions	
SIA Semiannual Yield Conventions Pricing Functions	. 2-27

Fixed-Income Sensitivities2-29Term Structure of Interest Rates2-30

 Pricing and Analyzing Equity Derivatives
 2-33

 Sensitivity Measures
 2-33

 Analysis Models
 2-34

Portfolio Analysis

3

Analyzing Portfolios	3-2
Portfolio Optimization Functions	3-3
Portfolio Construction Examples	
Efficient Frontier Example	3-5
Portfolio Selection and Risk Aversion	3-8
Optimal Risky Portfolio Example	3-9

Constraint Specification Linear Constraint Equations Specifying Additional Constraints	3-14
Active Returns and Tracking Error Efficient Frontier	3-20
Portfolios with Missing Data	3-24
Implementation of ecmnmle	3-24
Requirements	3-25
Technology Stock Example	3-25
Failure of ecmnmle	3-32
References	3-33

Solving Sample Problems

4 [

5 [

A

Functions - Categorical List 5-	-2
Handling and Converting Dates 5-	-2
Formatting Currency 5-	
Charting Financial Data 5-	
Analyzing and Computing Cash Flows 5-	-6
Fixed-Income Securities 5-	-8
Analyzing Portfolios 5-	.9
Financial Statistics 5-1	1
Pricing and Analyzing Derivatives 5-1	.1
GARCH Processes 5-1	2
Obsolete Bond Price and Yield Functions 5-1	2
Obsolete BDT Functions	.3
Functions — Alphabetical List 5-1	4

Bibliography

Bond Pricing and Yields A	-2
Term Structure of Interest Rates	-2
Derivatives Pricing and Yields A	-2
Portfolio Analysis A	-3
Financial Statistics	-3
Other References	-3

Glossary

Index

Getting Started

What Is the Financial Toolbox? (p. 1-2)	Overview of the product.
Using Matrix Functions for Finance (p. 1-4)	Elementary information about matrices.
Matrix Algebra Refresher (p. 1-7)	Matrix algebra you learned in school but may have forgotten.
Function Input/Output Arguments (p. 1-18)	Inputs and outputs for toolbox functions.

What Is the Financial Toolbox?

MATLAB[®] and the Financial Toolbox provide a complete integrated computing environment for financial analysis and engineering. The toolbox has everything you need to perform mathematical and statistical analysis of financial data and display the results with presentation-quality graphics. You can quickly ask, visualize, and answer complicated questions.

In traditional or spreadsheet programming you must deal with all sorts of housekeeping details: declaring, data typing, sizing, etc. MATLAB does all that for you. You just write expressions the way you think of problems. There is no need to switch tools, convert files, or rewrite applications.

With MATLAB and the Financial Toolbox, you can

- Compute and analyze prices, yields, and sensitivities for derivatives and other securities, and for portfolios of securities.
- Perform Securities Industry Association (SIA) compatible fixed-income pricing, yield, and sensitivity analysis.
- Analyze or manage portfolios.
- Design and evaluate hedging strategies.
- Identify, measure, and control risk.
- Analyze and compute cash flows, including rates of return and depreciation streams.
- Analyze and predict economic activity.
- Create structured financial instruments, including foreign-exchange instruments.
- Teach or conduct academic research.

This chapter uses MATLAB to review the fundamentals of matrix algebra you need for financial analysis and engineering applications. It contains these sections:

• "Using Matrix Functions for Finance" on page 1-4

Reviews "Key Definitions" on page 1-4 and some matrix algebra fundamentals, such as "Referencing Matrix Elements" on page 1-4 and "Transposing Matrices" on page 1-6. • "Matrix Algebra Refresher" on page 1-7

Provides a brief refresher on using matrix functions in financial analysis and engineering

• "Function Input/Output Arguments" on page 1-18

Describes acceptable formats for providing data to MATLAB and the resulting output from computations on the supplied data.

This material explains some MATLAB concepts and operations using financial examples to help get you started.

Using Matrix Functions for Finance

Many financial analysis procedures involve *sets* of numbers; for example, a portfolio of securities at various prices and yields. Matrices, matrix functions, and matrix algebra are the most efficient ways to analyze sets of numbers and their relationships. Spreadsheets focus on individual cells and the relationships between cells. While you can think of a set of spreadsheet cells (a range of rows and columns) as a matrix, a matrix-oriented tool like MATLAB manipulates sets of numbers more quickly, easily, and naturally.

Key Definitions

Matrix. A rectangular array of numeric or algebraic quantities subject to mathematical operations; the regular formation of elements into rows and columns. Described as an "m-by-n" matrix, with m the number of rows and n the number of columns. The description is always "row-by-column." For example, here is a 2-by-3 matrix of two bonds (the rows) with different par values, coupon rates, and coupon payment frequencies per year (the columns) entered using MATLAB notation.

Bonds = [1000 0.06 2 500 0.055 4]

Vector. A matrix with only one row or column. Described as a "1-by-n" or "m-by-1" matrix. The description is always "row-by-column." Here is a 1-by-4 vector of cash flows in MATLAB notation.

Cash = [1500 4470 5280 -1299]

Scalar. A 1-by-1 matrix; i.e., a single number.

Referencing Matrix Elements

To reference specific matrix elements use (row, column) notation. For example,

```
Bonds(1,2)
ans =
```

0.06

Cash(3) ans =

5280.00

You can enlarge matrices using small matrices or vectors as elements. For example,

AddBond = [1000 0.065 2]; Bonds = [Bonds; AddBond]

adds another row to the matrix and creates

Bonds =

1000	0.06	2
500	0.055	4
1000	0.065	2

Likewise,

Prices = [987.50 475.00 995.00]

Bonds = [Prices, Bonds]

adds another column and creates

Bonds =

987.50	1000	0.06	2
475.00	500	0.055	4
995.00	1000	0.065	2

Finally, the colon (:) is important in generating and referencing matrix elements. For example, to reference the par value, coupon rate, and coupon frequency of the second bond.

```
BondItems = Bonds(2, 2:4)
BondItems =
500.00 0.055 4
```

Transposing Matrices

Sometimes matrices are in the wrong configuration for an operation. In MATLAB, the apostrophe or prime character (') transposes a matrix: columns become rows, rows become columns. For example,

Cash = [1500 4470 5280 -1299]'

produces

Cash =

Matrix Algebra Refresher

Matrix algebra and matrix operations are fundamental to using MATLAB in financial analysis and engineering. The topics discussed in this section include

- "Adding and Subtracting Matrices" on page 1-7
- "Multiplying Matrices" on page 1-8
- "Dividing Matrices" on page 1-13
- "Solving Simultaneous Linear Equations" on page 1-13
- "Operating Element-by-Element" on page 1-17

These explanations should help refresh your skills.

William Sharpe's *Macro-Investment Analysis* also provides an excellent explanation of matrix algebra operations using MATLAB. It is available on the Web at

```
http://www.stanford.edu/~wfsharpe/mia/mia.htm
```

Note When you are setting up a problem, it helps to "talk through" the units and dimensions associated with each input and output matrix. In the example under "Multiplying Matrices" below, one input matrix has "five days' closing prices for three stocks," the other input matrix has "shares of three stocks in two portfolios," and the output matrix therefore has "five days' closing values for two portfolios." It also helps to name variables using descriptive terms.

Adding and Subtracting Matrices

Matrix addition and subtraction operate element-by-element. The two input matrices must have the same dimensions. The result is a new matrix of the same dimensions where each element is the sum or difference of each corresponding input element. For example, consider combining portfolios of different quantities of the same stocks ("shares of stocks A, B, and C [the rows] in portfolios P and Q [the columns] plus shares of A, B, and C in portfolios R and S").

Portfolios_PQ = [100 200 500 400 300 150];

```
Portfolios_RS = [175 125

200 200

100 500];
NewPortfolios = Portfolios_PQ + Portfolios_RS
NewPortfolios =

275.00 325.00

700.00 600.00

400.00 650.00
```

Adding or subtracting a scalar and a matrix is allowed and also operates element-by-element.

```
SmallerPortf = NewPortfolios-10

SmallerPortf =

265.00 315.00

690.00 590.00

390.00 640.00
```

Multiplying Matrices

Matrix multiplication does *not* operate element-by-element. It operates according to the rules of linear algebra. In multiplying matrices, it helps to remember this key rule: the inner dimensions must be the same. That is, if the first matrix is m-by-3, the second must be 3-by-n. The resulting matrix is m-by-n. It also helps to "talk through" the units of each matrix, as mentioned above.

Matrix multiplication also is *not* commutative; i.e., it is not independent of order. A*B does *not* equal B*A. The dimension rule illustrates this property. If A is 1-by-3 and B is 3-by-1, A*B yields a scalar (1-by-1) but B*A yields a 3-by-3 matrix.

Multiplying Vectors

Vector multiplication follows the same rules and helps illustrate the principles. For example, a stock portfolio has three different stocks and their closing prices today are ClosePrices = [42.5 15 78.875]

The portfolio contains these numbers of shares of each stock.

NumShares = [100 500 300]

To find the value of the portfolio, simply multiply the vectors

PortfValue = ClosePrices * NumShares

which yields

PortfValue =

35412.50

The vectors are 1-by-3 and 3-by-1; the resulting vector is 1-by-1, a scalar. Multiplying these vectors thus means multiplying each closing price by its respective number of shares and summing the result.

To illustrate order dependence, switch the order of the vectors

```
Values = NumShares * ClosePrices
Values =
4250.00 1500.00 7887.50
21250.00 7500.00 39437.50
12750.00 4500.00 23662.50
```

which shows the closing values of 100, 500, and 300 shares of each stock — not the portfolio value, and meaningless for this example.

Computing Dot Products of Vectors

In matrix algebra, if X and Y are vectors of the same length

 $Y = [y_1, y_2, \dots, y_n]$ $X = [x_1, x_2, \dots, x_n]$

then the dot product

$$X \bullet Y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

is the scalar product of the two vectors. It is an exception to the commutative rule. To compute the dot product in MATLAB, use $sum(X \cdot Y)$ or $sum(Y \cdot X)$. Just be sure the two vectors have the same dimensions. To illustrate, use the previous vectors.

As expected, the value in these cases is exactly the same as the PortfValue computed previously.

Multiplying Vectors and Matrices

Multiplying vectors and matrices follows the matrix multiplication rules and process. For example, a portfolio matrix contains closing prices for a week. A second matrix (vector) contains the stock quantities in the portfolio.

WeekClosePr =	[42.5	15	78.875
	42.125	15.5	78.75
	42.125	15.125	79
	42.625	15.25	78.875
	43	15.25	78.625];

```
PortQuan = [100
500
300];
```

To see the closing portfolio value for each day, simply multiply

```
WeekPortValue = WeekClosePr * PortQuan
```

WeekPortValue =

```
35412.50
35587.50
35475.00
35550.00
35512.50
```

The prices matrix is 5-by-3, the quantity matrix (vector) is 3-by-1, so the resulting matrix (vector) is 5-by-1.

Multiplying Two Matrices

Matrix multiplication also follows the rules of matrix algebra. In matrix algebra notation, if A is an m-by-n matrix and B is an n-by-p matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, B = \begin{bmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1p} \\ b_{21} & \dots & b_{2j} & \dots & b_{2p} \\ \vdots & & \vdots & & \vdots \\ b_{n1} & & b_{nj} & & b_{np} \end{bmatrix}$$

then C = A * B is an *m*-by-*p* matrix; and the element c_{ij} in the *i*th row and *j*th column of *C* is

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

To illustrate, assume there are two portfolios of the same three stocks above but with different quantities.

Multiplying the 5-by-3 week's closing prices matrix by the 3-by-2 portfolios matrix yields a 5-by-2 matrix showing each day's closing value for both portfolios.

```
PortfolioValues = WeekClosePr * Portfolios

PortfolioValues =

35412.50 26331.25

35587.50 26437.50

35475.00 26325.00

35550.00 26456.25

35512.50 26493.75
```

Monday's values result from multiplying each Monday closing price by its respective number of shares and summing the result for the first portfolio, then doing the same for the second portfolio. Tuesday's values result from multiplying each Tuesday closing price by its respective number of shares and summing the result for the first portfolio, then doing the same for the second portfolio. And so on through the rest of the week. With one simple command, MATLAB quickly performs many calculations.

Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar is an exception to the dimension and commutative rules. It just operates element-by-element.

Portfolios = [100 200 500 400 300 150]; DoublePort = Portfolios * 2 DoublePort = 200.00 400.00 1000.00 800.00 600.00 300.00

Dividing Matrices

Matrix division is useful primarily for solving equations, and especially for solving simultaneous linear equations (see the next section). For example, you want to solve for X in A * X = B.

In ordinary algebra, you would simply divide both sides of the equation by A, and X would equal B/A. However, since matrix algebra is not commutative $(A*X \neq X*A)$, different processes apply. In formal matrix algebra, the solution involves matrix inversion. MATLAB, however, simplifies the process by providing two matrix division symbols, left and right (\ and /). In general,

 $X = A \setminus B$ solves for X in A * X = B

X = B/A solves for X in X*A = B.

In general, matrix A must be a nonsingular square matrix; i.e., it must be invertible and it must have the same number of rows and columns. (Generally, a matrix is invertible if the matrix times its inverse equals the identity matrix. To understand the theory and proofs, please consult a textbook on linear algebra such as the one by Hill listed in Appendix A, "Bibliography.") MATLAB gives a warning message if the matrix is singular or nearly so.

Solving Simultaneous Linear Equations

Matrix division is especially useful in solving simultaneous linear equations. Consider this problem: given two portfolios of mortgage-based instruments, each with certain yields depending on the prime rate, how do you weight the portfolios to achieve certain annual cash flows? The answer involves solving two linear equations.

A linear equation is any equation of the form

 $a_1x + a_2y = b$

where a_1 , a_2 , and b are constants (with a_1 and a_2 not both zero), and x and y are variables. (It's a linear equation because it describes a line in the *xy*-plane. For example the equation 2x + y = 8 describes a line such that if x = 2 then y = 4.)

A system of linear equations is a set of linear equations that we usually want to solve at the same time; i.e., simultaneously. A basic principle for exact answers in solving simultaneous linear equations requires that there be as many equations as there are unknowns. To get exact answers for x and y there

must be two equations. For example, to solve for *x* and *y* in the system of linear equations

$$2x + y = 13$$
$$x - 3y = -18$$

there must be two equations, which there are. Matrix algebra represents this system as an equation involving three matrices: A for the left-side constants, X for the variables, and B for the right-side constants

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \end{bmatrix} \qquad B = \begin{bmatrix} 13 \\ -18 \end{bmatrix}$$

where A * X = B.

Solving the system simultaneously simply means solving for *X*. Using MATLAB,

```
A = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix};

B = \begin{bmatrix} 13 \\ -18 \end{bmatrix};

X = A \setminus B

we for X in A
```

solves for X in A * X = B.

So x = 3 and y = 7 in this example. In general, you can use matrix algebra to solve any system of linear equations such as

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

by representing them as matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

and solving for X in A * X = B.

To illustrate, consider this situation. There are two portfolios of mortgage-based instruments, M1 and M2. They have current annual cash payments of \$100 and \$70 per unit, respectively, based on today's prime rate. If the prime rate moves down one percentage point, their payments would be \$80 and \$40. An investor holds 10 units of M1 and 20 units of M2. The investor's receipts equal cash payments times units, or R = C * U, for each prime-rate scenario.

As word equations,

	M1	M2
Prime flat:	\$100 * 10 units+	- \$70 * 20 units = \$2400 receipts
Prime down:	\$80 * 10 units +	- \$40 * 20 units = \$1600 receipts

As MATLAB matrices,

```
Cash = [100 70
80 40];
Units =[10
20];
Receipts = Cash * Units
Receipts =
2400.00
1600.00
```

Now the investor asks the question: given these two portfolios and their characteristics, how many units of each should I hold to receive \$7000 if the prime rate stays flat and \$5000 if the prime drops one percentage point? Find the answer by solving two linear equations.

M1M2Prime flat:\$100 * x units + \$70 * y units = \$7000 receiptsPrime down:\$80 * x units + \$40 * y units = \$5000 receipts

In other words, solve for U (units) in the equation R (receipts) = C (cash) * U (units). Using MATLAB left division

```
Cash = [100 70
80 40];
Receipts = [7000
5000];
Units = Cash \ Receipts
Units =
43.75
37.50
```

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio M2 to achieve the annual receipts desired.

Operating Element-by-Element

Finally, element-by-element arithmetic operations are called *array* operations. To indicate an array operation in MATLAB, precede the operator with a period (.). Addition and subtraction, and matrix multiplication and division by a scalar, are already array operations so no period is necessary. When using array operations on two matrices, the dimensions of the matrices must be the same. For example, given vectors of stock dividends and closing prices,

```
Dividends = [1.90 0.40 1.56 4.50];

Prices = [25.625 17.75 26.125 60.50];

Yields = Dividends ./ Prices

Yields =

0.0741 0.0225 0.0597 0.0744
```

Function Input/Output Arguments

MATLAB was designed to be a large-scale array (vector or matrix) processor. In addition to its linear algebra applications, the general array-based processing facility has the capability to perform repeated operations on collections of data. When MATLAB code is written to operate simultaneously on collections of data stored in arrays, the code is said to be vectorized. Vectorized code is not only clean and concise, but is also efficiently processed by the underlying MATLAB engine.

Input Arguments

Matrix Input

Because MATLAB can process vectors and matrices easily, most functions in the Financial Toolbox allow vector or matrix input arguments, rather than just single (scalar) values.

For example, the irr function computes the internal rate of return of a cash flow stream. It accepts a vector of cash flows and returns a scalar-valued internal rate of return. However, it also accepts a matrix of cash flow streams, a column in the matrix representing a different cash flow stream. In this case, irr returns a vector of internal rates of return, each entry in the vector corresponding to a column of the input matrix. Many other toolbox functions work similarly.

As an example, suppose you make an initial investment of \$100, from which you then receive by a series of annual cash receipts of \$10, \$20, \$30, \$40, and \$50. This cash flow stream may be stored in a vector

CashFlows = [-100 10 20 30 40 50]

which MATLAB displays as

```
CashFlows =
-100
10
20
30
40
50
```

The irr function can compute the internal rate of return of this stream.

```
Rate = irr(CashFlows)
```

The internal rate of return of this investment is

Rate =

0.1201

or 12.01%.

In this case, a single cash flow stream (written as an input vector) produces a scalar output – the internal rate of return of the investment.

Extending this example, if you process a matrix of identical cash flow streams

Rate = irr([CashFlows CashFlows CashFlows])

you should expect to see identical internal rates of return for each of the three investments.

Rate =

0.1201 0.1201 0.1201

This simple example illustrates the power of vectorized programming. The example shows how to collect data into a matrix and then use a toolbox function to compute answers for the entire collection. This feature can be useful in portfolio management, for example, where you might want to organize multiple assets into a single collection. Place data for each asset in a different column or row of a matrix, then pass the matrix to a Financial Toolbox function. MATLAB performs the same computation on all of the assets at once.

Matrices of String Input

Enter strings in MATLAB surrounded by single quotes ('string').

Strings are stored as character arrays, one ASCII character per element. Thus the date string

DateString = '9/16/2001'

is actually a 1-by-9 vector. Strings making up the rows of a matrix or vector all must have the same length. To enter several date strings, therefore, use a column vector and be sure all strings are the same length. Fill in with spaces

or zeros. For example, to create a vector of dates corresponding to irregular cash flows,

```
DateFields = ['01/12/2001'
'02/14/2001'
'03/03/2001'
'06/14/2001'
'12/01/2001'];
```

DateFields actually becomes a 5-by-10 character array.

Don't mix numbers and strings in a matrix. If you do, MATLAB treats all entries as characters. For example,

Item = [83 90 99 '14-Sep-1999']

becomes a 1-by-14 character array, not a 1-by-4 vector, and it contains

Item =

SZc14-Sep-1999

Function Output Arguments

Some functions return no arguments, some return just one, and some return multiple arguments. Functions that return multiple arguments use the syntax

[A, B, C] = function(variables...)

to return arguments A, B, and C. If you omit all but one, the function returns the first argument. Thus, for this example if you use the syntax

X = function(variables...)

function returns a value for A, but not for B or C.

Some functions that return vectors accept only scalars as arguments. Why could such functions not accept vectors as arguments and return matrices, where each column in the output matrix corresponds to an entry in the input vector? The answer is that the output vectors can be variable length and thus will not fit in a matrix without some convention to indicate that the shorter columns are missing data. Functions that require asset life as an input, and return values corresponding to different periods over that life, cannot generally handle vectors or matrices as input arguments. Those functions are

amortize	Amortization
depfixdb	Fixed declining-balance depreciation
depgendb	General declining-balance depreciation
depsoyd	Sum of years' digits depreciation

For example, suppose you have a collection of assets such as automobiles and you want to compute the depreciation schedules for them. The function depfixdb computes a stream of declining-balance depreciation values for an asset. You might want to set up a vector where each entry is the initial value of each asset. depfixdb also needs the lifetime of an asset. If you were to set up such a collection of automobiles as an input vector, and the lifetimes of those automobiles varied, the resulting depreciation streams would differ in length according to the life of each automobile, and the output column lengths would vary. A matrix must have the same number of rows in each column.

Interest Rate Arguments

One common argument, both as input and output, is interest rate. All Financial Toolbox functions expect and return interest rates as decimal fractions. Thus an interest rate of 9.5% is indicated as 0.095.

Tutorial

Handling and Converting Dates (p. 2-4)	Date strings and serial date numbers. Date conversions. Holidays and cash-flow dates.
Formatting Currency (p. 2-12)	Decimal and fractional formats. Bank format.
Charting Financial Data (p. 2-13)	Useful functions for plotting financial data.
Analyzing and Computing Cash Flows (p. 2-16)	Rates of return. Present and future values. Depreciation.
Pricing and Computing Yields for Fixed-Income Securities (p. 2-20)	Securities Industry Association (SIA) conventions. Sensitivities. Term structure.
Pricing and Analyzing Equity Derivatives (p. 2-33)	Black-Scholes and binomial models.

The Financial Toolbox contains functions that perform many common financial tasks, including

Handling and converting dates

Calendar functions convert dates among different formats (including Excel formats), determine future or past dates, find dates of holidays and business days, compute time differences between dates, find coupon dates and coupon periods for coupon bonds, and compute time periods based on 360-, 365-, or 366-day years.

• Formatting currency

The toolbox includes functions for handling decimal values in bank (currency) formats and as fractional prices.

• Charting financial data

Charting functions produce a variety of financial charts including Bollinger bands, high-low-close charts, candlestick plots, point and figure plots, and moving-average plots. The Financial Time Series Toolbox provides additional charting functions. See the *Financial Time Series Toolbox User's Guide* for a description of these functions.

Analyzing and computing cash flows

Cash-flow evaluation and financial accounting functions compute interest rates, rates of return, payments associated with loans and annuities, future and present values, depreciation, and other standard accounting calculations associated with cash-flow streams.

• Pricing and computing yields for fixed-income securities; analyzing the term structure of interest rates

Securities Industry Association (SIA) compliant fixed-income functions compute prices, yields, accrued interest, and sensitivities for securities such as bonds, zero-coupon bonds, and Treasury bills. They handle odd first and last periods in price/yield calculations, compute accrued interest and discount rates, and calculate convexity and duration. Another set of functions analyzes term structure of interest rates, including pricing bonds from yield curves and bootstrapping yield curves from market prices. • Pricing and analyzing equity derivatives

Derivatives analysis functions compute prices, yields, and sensitivities for derivative securities. They deal with both European and American options.

Black-Scholes functions work with European options. They compute delta, gamma, lambda, rho, theta, and vega, as well as values of call and put options.

Binomial functions work with American options, computing put and call prices.

• Analyzing portfolios

Portfolio analysis functions provide basic utilities to compute variances and covariance of portfolios, find combinations to minimize variance, compute Markowitz efficient frontiers, and calculate combined rates of return.

The toolbox also contains sets of functions for modeling volatility in time series.

• Generalized Autoregressive Conditional Heteroskedasticity (GARCH) functions model the volatility of univariate economic time series. (The GARCH Toolbox provides a more comprehensive and integrated computing environment. For more information see the GARCH Toolbox documentation or the financial products Web page at

http://www.mathworks.com/products/finprod.)

Handling and Converting Dates

Since virtually all financial data is dated or derives from a time series, financial functions must have extensive date-handling capabilities. This section discusses date handling in the Financial Toolbox, specifically these topics:

- "Date Formats" on page 2-4
- "Date Conversions" on page 2-5
- "Current Date and Time" on page 2-8
- "Determining Dates" on page 2-9

Note If you specify a two-digit year, MATLAB assumes that the year lies within the 100-year period centered about the current year. See the function datenum for specific information. MATLAB internal date handling and calculations generate no ambiguous values. However, whenever possible, programmers should use serial date numbers or date strings containing four-digit years.

Date Formats

You most often work with date strings (14-Sep-1999) when dealing with dates. The Financial Toolbox works internally with *serial date numbers* (e.g., 730377). A serial date number represents a calendar date as the number of days that has passed since a fixed base date. In MATLAB, serial date number 1 is January 1, 0000 A.D. MATLAB also uses serial time to represent fractions of days beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So 6:00 pm on 14-Sep-1999, in MATLAB, is date number 730377.75.

Many toolbox functions that require dates accept either date strings or serial date numbers. If you are dealing with a few dates at the MATLAB command-line level, date strings are more convenient. If you are using toolbox functions on large numbers of dates, as in analyzing large portfolios or cash flows, performance improves if you use date numbers.

The toolbox provides functions that convert date strings to serial date numbers, and vice versa.

Date Conversions

The toolbox provides functions that convert between date formats.

datedisp	Displays a numeric matrix with date entries formatted as date strings
datenum	Converts a date string to a serial date number
datestr	Converts a serial date number to a date string
m2xdate	Converts MATLAB serial date number to Excel serial date number
x2mdate	Converts Excel serial date number to MATLAB serial date number

Another function, datevec, converts a date number or date string to a date vector whose elements are [Year Month Day Hour Minute Second]. Date vectors are mostly an internal format for some MATLAB functions; you would not often use them in financial calculations.

Input Conversions

The datenum function is important for using the Financial Toolbox efficiently. datenum takes an input string in any of several formats, with 'dd-mmm-yyyy', 'mm/dd/yyyy' or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. The input string can have up to six fields formed by letters and numbers separated by any other characters:

- The day field is an integer from 1 to 31.
- The month field is either an integer from 1 to 12 or an alphabetic string with at least three characters.
- The year field is a nonnegative integer: if only two numbers are specified, then the year is assumed to lie within the 100-year period centered about the current year; if the year is omitted, the current year is used as the default.
- The hours, minutes, and seconds fields are optional. They are integers separated by colons or followed by 'am' or 'pm'.

For example, if the current year is 1999, then these are all equivalent

'17-May-1999' '17-May-99'

```
'17-may'
'May 17, 1999'
'5/17/99'
'5/17'
```

and both of these represent the same time.

'17-May-1999, 18:30' '5/17/99/6:30 pm'

Note that the default format for numbers-only input follows the American convention. Thus 3/6 is March 6, not June 3.

With datenum you can convert dates into serial date format, store them in a matrix variable, then later pass the variable to a function. Alternatively, you can use datenum directly in a function input argument list.

For example, consider the function bndprice that computes the price of a bond given the yield-to-maturity. First set up variables for the yield-to-maturity, coupon rate, and the necessary dates.

Yield	= 0.07;
CouponRate	= 0.08;
Settle	= datenum('17-May-2000');
Maturity	<pre>= datenum('01-Oct-2000');</pre>

Then call the function with the variables

bndprice(Yield, CouponRate, Settle, Maturity)

Alternatively, convert date strings to serial date numbers directly in the function input argument list.

```
bndprice(0.07, 0.08, datenum('17-May-2000'),...
datenum('01-Oct-2000'))
```

bndprice is an example of a function designed to detect the presence of date strings and make the conversion automatically. For these functions date strings may be passed directly.

bndprice(0.07, 0.08, '17-May-2000', '01-Oct-2000')

The decision to represent dates as either date strings or serial date numbers is often a matter of convenience. For example, when formatting data for visual display or for debugging date-handling code, it is often much easier to view dates as date strings because serial date numbers are difficult to interpret. Alternatively, serial date numbers are just another type of numeric data, and can be placed in a matrix along with any other numeric data for convenient manipulation.

Remember that if you create a vector of input date strings, use a column vector and be sure all strings are the same length. Fill with spaces or zeros. See "Matrices of String Input" on page 1-19.

Output Conversions

The function datestr converts a serial date number to one of 19 different date string output formats showing date, time, or both. The default output for dates is a day-month-year string, e.g., 24-Aug-2000. This function is quite useful for preparing output reports.

Format	Description
01-Mar-2000 15:45:17	day-month-year hour:minute:second
01-Mar-2000	day-month-year
03/01/00	month/day/year
Mar	month, three letters
Μ	month, single letter
3	month
03/01	month/day
1	day of month
Wed	day of week, three letters
W	day of week, single letter
2000	year, four numbers
99	year, two numbers
Mar01	month year

Format	Description
15:45:17	hour:minute:second
03:45:17 PM	hour:minute:second AM or PM
15:45	hour:minute
03:45 PM	hour:minute AM or PM
Q1-99	calendar quarter-year
Q1	calendar quarter

Current Date and Time

The functions today and now return serial date numbers for the current date, and the current date and time, respectively.

```
today
ans =
730693
now
ans =
730693.48
he MATLAB functi
```

The MATLAB function date returns a string for today's date.

date

ans =

26-Jul-2000

Determining Dates

The toolbox provides many functions for determining specific dates, including functions which account for holidays and other nontrading days.

For example, you schedule an accounting procedure for the last Friday of every month. The lweekdate function returns those dates for 2000; the 6 specifies Friday.

```
Fridates = lweekdate(6, 2000, 1:12);
Fridays = datestr(Fridates)
Fridays =
28-Jan-2000
25-Feb-2000
31-Mar-2000
28-Apr-2000
28-Apr-2000
20-Jun-2000
28-Jul-2000
29-Sep-2000
29-Sep-2000
29-Sep-2000
29-Dec-2000
```

Or your company closes on Martin Luther King Jr. Day, which is the third Monday in January. The nweekdate function determines those dates for 2001 through 2004.

```
MLKDates = nweekdate(3, 2, 2001:2004, 1);
MLKDays = datestr(MLKDates)
MLKDays =
15-Jan-2001
21-Jan-2002
20-Jan-2003
19-Jan-2004
```

Accounting for holidays and other nontrading days is important when examining financial dates. The toolbox provides the holidays function, which contains holidays and special nontrading days for the New York Stock Exchange between 1950 and 2030, inclusive. You can edit the holidays.m file to customize it with your own holidays and nontrading days. In this example, use it to determine the standard holidays in the last half of 2000.

```
LHHDates = holidays('1-Jul-2000', '31-Dec-2000');
LHHDays = datestr(LHHDates)
LHHDays =
04-Jul-2000
04-Sep-2000
23-Nov-2000
25-Dec-2000
```

Now use the toolbox busdate function to determine the next business day after these holidays.

```
LHNextDates = busdate(LHHDates);
LHNextDays = datestr(LHNextDates)
LHNextDays =
05-Jul-2000
05-Sep-2000
24-Nov-2000
26-Dec-2000
```

The toolbox also provides the cfdates function to determine cash-flow dates for securities with periodic payments. This function accounts for the coupons per year, the day-count basis, and the end-of-month rule. For example, to determine the cash-flow dates for a security that pays four coupons per year on the last day of the month, on an actual/365 day-count basis, just enter the settlement date, the maturity date, and the parameters.

```
PayDates = cfdates('14-Mar-2000', '30-Nov-2001', 4, 3, 1);
PayDays = datestr(PayDates)
PayDays =
31-May-2000
31-Aug-2000
30-Nov-2000
28-Feb-2001
31-May-2001
31-Aug-2001
30-Nov-2001
```

Formatting Currency

The Financial Toolbox provides several functions to format currency and chart financial data.

cur2frac	Converts decimal currency values to fractional values
cur2str	Converts a value to Financial Toolbox bank format
frac2cur	Converts fractional currency values to decimal values

These examples show their use.

Dec = frac2cur('12.1', 8)

returns Dec = 12.125, which is the decimal equivalent of 12-1/8. The second input variable is the denominator of the fraction.

Str = cur2str(-8264, 2)

returns the string (\$8264.00). For this toolbox function, the output format is a numerical format with dollar sign prefix, two decimal places, and negative numbers in parentheses; e.g., (\$123.45) and \$6789.01. The standard MATLAB bank format uses two decimal places, no dollar sign, and a minus sign for negative numbers; e.g., -123.45 and 6789.01.

Charting Financial Data

The following toolbox financial charting functions plot financial data and produce presentation-quality figures quickly and easily.

bolling	Bollinger band chart
candle	Candlestick chart
pointfig	Point and figure chart
highlow	High, low, open, close chart
movavg	Leading and lagging moving averages chart

These functions work with standard MATLAB functions that draw axes, control appearance, and add labels and titles. For users having additional charting requirements, the Financial Time Series Toolbox provides a more comprehensive set of charting functions.

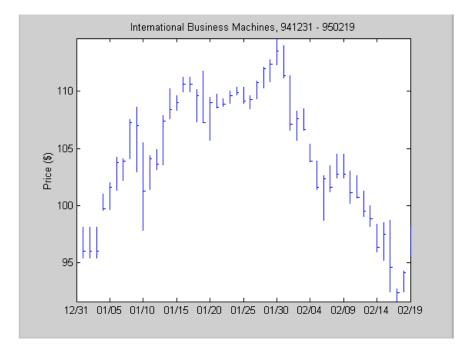
Here are two plotting examples: a high-low-close chart of sample IBM stock price data, and a Bollinger band chart of the same data. These examples load data from an external file (ibm.dat), then call the functions using subsets of the data. ibm is a six-column matrix where each row is a trading day's data and where columns 2, 3, and 4 contain the high, low, and closing prices, respectively.

Note The data in ibm.dat is fictional and for illustrative use only.

High-Low-Close Chart Example

First load the data and set up matrix dimensions. load and size are standard MATLAB functions.

```
load ibm.dat;
[ro, co] = size(ibm);
```


Open a figure window for the chart. Use the Financial Toolbox highlow function to plot high, low, and close prices for the last 50 trading days in the data file.

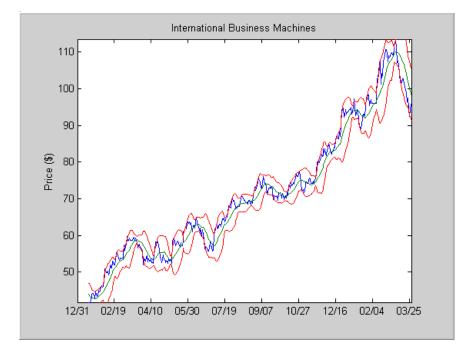
```
figure;
highlow(ibm(ro-50:ro,2),ibm(ro-50:ro,3),ibm(ro-50:ro,4),[],'b');
```

Add labels and title, and set axes with standard MATLAB functions. Use the Financial Toolbox dateaxis function to provide dates for the *x*-axis ticks.

```
xlabel('');
ylabel('Price ($)');
title('International Business Machines, 941231 - 950219');
axis([0 50 -inf inf]);
dateaxis('x',6,'31-Dec-1994')
```

MATLAB produces a figure similar to this. The plotted data and axes you see may differ. Viewed online, the high-low-close bars are blue.

Bollinger Chart Example


Next the Financial Toolbox bolling function produces a Bollinger band chart using all the closing prices in the same IBM stock price matrix. A Bollinger band chart plots actual data along with three other bands of data. The upper band is two standard deviations above a moving average; the lower band is two standard deviations below that moving average; and the middle band is the moving average itself. This example uses a 15-day moving average.

Assuming the previous IBM data is still loaded, simply execute the Financial Toolbox function.

```
bolling(ibm(:,4), 15, 0);
```

Specify the axes, labels, and titles. Again, use dateaxis to add the *x*-axis dates.

```
axis([0 ro min(ibm(:,4)) max(ibm(:,4))]);
ylabel('Price ($)');
title(['International Business Machines']);
dateaxis('x', 6,'31-Dec-1994')
```


For help using MATLAB plotting functions, see "Creating Plots" in the MATLAB documentation. See the MATLAB documentation for details on the axis, title, xlabel, and ylabel functions.

Analyzing and Computing Cash Flows

The Financial Toolbox cash-flow functions compute interest rates, rates of return, present or future values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment of \$20,000 followed by three annual return payments, a second investment of \$5,000, then four more returns. Investments are negative cash flows, return payments are positive cash flows.

Stream = [-20000, 2000, 2500, 3500, -5000, 6500,... 9500, 9500, 9500];

Interest Rates/Rates of Return

Several functions calculate interest rates involved with cash flows. To compute the internal rate of return of the cash stream, simply execute the toolbox function irr

ROR = irr(Stream)

which gives a rate of return of 11.72%.

Note that the internal rate of return of a cash flow may not have a unique value. Every time the sign changes in a cash flow, the equation defining irr can give up to two additional answers. An irr computation requires solving a polynomial equation, and the number of real roots of such an equation can depend on the number of sign changes in the coefficients. The equation for internal rate of return is

$$\frac{cf_{1}}{(1+r)} + \frac{cf_{2}}{(1+r)^{2}} + \dots + \frac{cf_{n}}{(1+r)^{n}} + Investment = 0$$

where *Investment* is a (negative) initial cash outlay at time 0, cf_n is the cash flow in the *n*th period, and *n* is the number of periods. Basically, irr finds the rate *r* such that the net present value of the cash flow equals the initial investment. If all of the cf_n s are positive there is only one solution. Every time there is a change of sign between coefficients, up to two additional real roots are possible. There is usually only one answer that makes sense, but it is possible to get returns of both 5% and 11% (for example) from one income stream.

Another toolbox rate function, effrr, calculates the effective rate of return given an annual interest rate (also known as nominal rate or annual percentage rate, APR) and number of compounding periods per year. To find the effective rate of a 9% APR compounded monthly, simply enter

```
Rate = effrr(0.09, 12)
```

The answer is 9.38%.

A companion function nomrr computes the nominal rate of return given the effective annual rate and the number of compounding periods.

Present or Future Values

The toolbox includes functions to compute the present or future value of cash flows at regular or irregular time intervals with equal or unequal payments: fvfix, fvvar, pvfix, and pvvar. The -fix functions assume equal cash flows at regular intervals, while the -var functions allow irregular cash flows at irregular periods.

Now compute the net present value of the sample income stream for which you computed the internal rate of return. This exercise also serves as a check on that calculation because the net present value of a cash stream at its internal rate of return should be zero. Enter

NPV = pvvar(Stream, ROR)

which returns an answer very close to zero. The answer usually is not *exactly* zero due to rounding errors and the computational precision of the computer.

Note Other toolbox functions behave similarly. The functions that compute a bond's yield, for example, often must solve a nonlinear equation. If you then use that yield to compute the net present value of the bond's income stream, it usually does not *exactly* equal the purchase price — but the difference is negligible for practical applications.

Depreciation

The toolbox includes functions to compute standard depreciation schedules: straight line, general declining-balance, fixed declining-balance, and sum of years' digits. Functions also compute a complete amortization schedule for an asset, and return the remaining depreciable value after a depreciation schedule has been applied.

This example depreciates an automobile worth \$15,000 over five years with a salvage value of \$1,500. It computes the general declining balance using two different depreciation rates: 50% (or 1.5), and 100% (or 2.0, also known as double declining balance). Enter

Decline1 = depgendb(15000, 1500, 5, 1.5) Decline2 = depgendb(15000, 1500, 5, 2.0)

which returns

Decline1 =				
4500.00	3150.00	2205.00	1543.50	2101.50
Decline2 =				
6000.00	3600.00	2160.00	1296.00	444.00

These functions return the actual depreciation amount for the first four years and the remaining depreciable value as the entry for the fifth year.

Annuities

Several toolbox functions deal with annuities. This first example shows how to compute the interest rate associated with a series of loan payments when only the payment amounts and principal are known. For a loan whose original value was \$5000.00 and which was paid back monthly over four years at \$130.00/month

```
Rate = annurate(4*12, 130, 5000, 0, 0)
```

The function returns a rate of 0.0094 monthly, or approximately 11.28% annually.

The next example uses a present-value function to show how to compute the initial principal when the payment and rate are known. For a loan paid at 3300.00/month over four years at 11% annual interest

Principal = pvfix(0.11/12, 4*12, 300, 0, 0)

The function returns the original principal value of \$11,607.43.

The final example computes an amortization schedule for a loan or annuity. The original value was \$5000.00 and was paid back over 12 months at an annual rate of 9%.

[Prpmt, Intpmt, Balance, Payment] = ... amortize(0.09/12, 12, 5000, 0, 0);

This function returns vectors containing the amount of principal paid,

Prpmt = [399.76 402.76 405.78 408.82 411.89 414.97 418.09 421.22 424.38 427.56 430.77 434.00]

the amount of interest paid,

Intpmt = [37.50 34.50 31.48 28.44 25.37 22.28 19.17 16.03 12.88 9.69 6.49 3.26]

the remaining balance for each period of the loan,

Balance = [4600.24 4197.49 3791.71 3382.89 2971.01 2556.03 2137.94 1716.72 1292.34 864.77 434.00 0.00]

and a scalar for the monthly payment.

Payment = 437.26

Pricing and Computing Yields for Fixed-Income Securities

The Securities Industry Association (SIA) has established conventions regarding bond pricing, yield calculation and quotation, time factors and accrued interest, coupon and quasi-coupon dates, and duration and convexity sensitivity measures. The Financial Toolbox includes SIA-compliant functions to compute accrued interest, determine prices and yields, as well as calculate convexity and duration of fixed-income securities. It also includes a set of functions to generate and analyze term structure of interest rates.

SIA-compliant functions can be used with U.S. Treasury bills, bonds, and notes; corporate bonds; and municipal bonds. Bonds can have long, normal or short first or last coupon periods.

The online Function Reference identifies SIA-compliant functions. These functions have been thoroughly tested against the benchmarks found in Jan Mayle's book listed in Appendix A, "Bibliography."

Terminology

Since terminology varies among texts on this subject, here are some basic definitions that apply to these Financial Toolbox functions. The Glossary contains additional definitions.

The *settlement date* of a bond is the date when money first changes hands; i.e., when a buyer pays for a bond. It need not coincide with the *issue date*, which is the date a bond is first offered for sale.

The *first coupon date* and *last coupon date* are the dates when the first and last coupons are paid, respectively. Although bonds typically pay periodic annual or semiannual coupons, the length of the first and last coupon periods may differ from the standard coupon period. The toolbox includes price and yield functions that handle these odd first and/or last periods.

Successive *quasi-coupon dates* determine the length of the standard coupon period for the fixed income security of interest, and do not necessarily coincide with actual coupon payment dates. The toolbox includes functions that calculate both actual and quasi-coupon dates for bonds with odd first and/or last periods.

Fixed-income securities can be purchased on dates that do not coincide with coupon payment dates. In this case, the bond owner is not entitled to the full value of the coupon for that period. When a bond is purchased between coupon dates, the buyer must compensate the seller for the pro-rata share of the coupon interest earned from the previous coupon payment date. This pro-rata share of the coupon payment is called *accrued interest*. The *purchase price*, the price actually paid for a bond, is the quoted market price plus accrued interest.

The *maturity date* of a bond is the date when the issuer returns the final face value, also known as the *redemption value* or *par value*, to the buyer. The *yield-to-maturity* of a bond is the nominal compound rate of return that equates the present value of all future cash flows (coupons and principal) to the current market price of the bond.

The *period* of a bond refers to the frequency with which the issuer of a bond makes coupon payments to the holder.

Period Value	Payment Schedule
0	No coupons. (Zero coupon bond.)
1	Annual
2	Semiannual
3	Tri-annual
4	Quarterly
6	Bi-monthly
12	Monthly

Table 2-1: Period of a Bond

The *basis* of a bond refers to the basis or day-count convention for a bond. Basis is normally expressed as a fraction in which the numerator determines the number of days between two dates, and the denominator determines the number of days in the year. For example, the numerator of *actual/actual* means that when determining the number of days between two dates, count the actual number of days; the denominator means that you use the actual number of days in the given year in any calculations (either 365 or 366 days depending on whether or not the given year is a leap year).

Basis Value	Meaning	Description
0 (default)	actual/actual	Actual days held over actual days in coupon period. Denominator is 365 in most years and 366 in a leap year.
1	30/360 (SIA)	Each month contains 30 days; a year contains 360 days. Payments are adjusted for bonds that pay coupons on the last day of February.
2	actual/360	Actual days held over 360.
3	actual/365	Actual days held over 365, even in leap years.
4	30/360 PSA (Public Securities Association)	Each month contains 30 days; a year contains 360 days. If the last date of the period is the last day of February, the month is extended to 30 days.
5	30/360 ISDA (International Swap Dealers Association)	Variant of 30/360 with slight differences for calculating number of days in a month.
6	30/360 European	Variant of 30/360 used primarily in Europe.
7	actual/365 Japanese	All years contain 365 days. Leap days are ignored.

Table 2-2: Basis of a Bond

Note Although the concept of day count sounds deceptively simple, the actual calculation of day counts can be quite complex. You can find a good discussion of day counts and the formulas for calculating them in Chapter 5 of Stigum and Robinson, *Money Market and Bond Calculations*.

The *end-of-month rule* affects a bond's coupon payment structure. When the rule is in effect, a security that pays a coupon on the last actual day of a month will always pay coupons on the last day of the month. This means, for example, that a semiannual bond that pays a coupon on February 28 in nonleap years will pay coupons on August 31 in all years and on February 29 in leap years.

Table 2-3: End-of-Month Rule

End of Month Rule Value	Meaning
1 (default)	Rule in effect.
0	Rule not in effect.

SIA Framework

Many of the fixed-income related functions in the Financial Toolbox comply with the Securities Industry Association (SIA) conventions. Although not all SIA-compliant functions require the same input arguments, they all accept the following common set of input arguments.

Table 2-4: SIA Common Input Arguments

Input	Meaning
Settle	Settlement date
Maturity	Maturity date
Period	Coupon payment period
Basis	Day-count basis

Input	Meaning
EndMonthRule	End-of-month payment rule
IssueDate	Bond issue date
FirstCouponDate	First coupon payment date
LastCouponDate	Last coupon payment date

Table 2-4: SIA Common Input Arguments (Continued)

Of the common input arguments, only Settle and Maturity are required. All others are optional. They will be set to the default values if you do not explicitly set them. Note that, by default, the FirstCouponDate and LastCouponDate are nonapplicable. In other words, if you do not specify FirstCouponDate and LastCouponDate, the bond is assumed to have no odd first or last coupon periods. In this case, the bond is simply a standard bond with a coupon payment structure based solely on the maturity date.

SIA Default Parameter Values

To illustrate the use of default values in SIA-compliant functions, consider the cfdates function, which computes actual cash flow payment dates for a portfolio of fixed income securities regardless of whether the first and/or last coupon periods are normal, long, or short.

The complete calling syntax with the full input argument list is

```
CFlowDates = cfdates(Settle, Maturity, Period, Basis, ...
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
```

while the minimal calling syntax requires only settlement and maturity dates

```
CFlowDates = cfdates(Settle, Maturity)
```

Single Bond Example

As an example, suppose you have a bond with these characteristics.

Settle	= '20-Sep-1999'
Maturity	= '15-0ct-2007'
Period	= 2
Basis	= 0
EndMonthRule	= 1

IssueDate = NaN FirstCouponDate = NaN LastCouponDate = NaN

Note that Period, Basis, and EndMonthRule are set to their default values, and IssueDate, FirstCouponDate, and LastCouponDate are set to NaN.

Formally, a NaN is an IEEE arithmetic standard for *Not-a-Number* and is used to indicate the result of an undefined operation (e.g., zero divided by zero). However, NaN is also a very convenient placeholder. In the SIA functions of the Financial Toolbox, NaN indicates the presence of a nonapplicable value. It tells the SIA fixed-income functions to ignore the input value and apply the default. Setting IssueDate, FirstCouponDate, and LastCouponDate to NaN in this example tells cfdates to assume that the bond has been issued prior to settlement and that no odd first or last coupon periods exist.

Having set these values, all these calls to cfdates produce the same result.

```
cfdates(Settle, Maturity)
cfdates(Settle, Maturity, Period)
cfdates(Settle, Maturity, Period, [])
cfdates(Settle, Maturity, [], Basis)
cfdates(Settle, Maturity, [], [])
cfdates(Settle, Maturity, Period, [], EndMonthRule)
cfdates(Settle, Maturity, Period, [], NaN)
cfdates(Settle, Maturity, Period, [], [], IssueDate)
cfdates(Settle, Maturity, Period, [], [], IssueDate, [], [])
cfdates(Settle, Maturity, Period, [], [], [], LastCouponDate)
cfdates(Settle, Maturity, Period, Basis, EndMonthRule, ...
IssueDate, FirstCouponDate, LastCouponDate)
```

Thus, leaving a particular input unspecified has the same effect as passing an empty matrix ([]) or passing a NaN – all three tell cfdates (and other SIA-compliant functions) to use the default value for a particular input parameter.

Bond Portfolio Example

Since the previous example included only a single bond, there was no difference between passing an empty matrix or passing a NaN for an optional input argument. For a portfolio of bonds, however, using NaN as a placeholder is the only way to specify default acceptance for some bonds while explicitly setting nondefault values for the remaining bonds in the portfolio.

Now suppose you have a portfolio of two bonds.

```
Settle = '20-Sep-1999'
Maturity = ['15-Oct-2007'; '15-Oct-2010']
```

These calls to cfdates all set the coupon period to its default value (Period = 2) for both bonds.

```
cfdates(Settle, Maturity, 2)
cfdates(Settle, Maturity, [2 2])
cfdates(Settle, Maturity, [])
cfdates(Settle, Maturity, NaN)
cfdates(Settle, Maturity, [NaN NaN])
cfdates(Settle, Maturity)
```

The first two calls explicitly set Period = 2. Since Maturity is a 2-by-1 vector of maturity dates, cfdates knows you have a two-bond portfolio.

The first call specifies a single (i.e., scalar) 2 for Period. Passing a scalar tells cfdates to apply the scalar-valued input to all bonds in the portfolio. This is an example of implicit scalar-expansion. Note that the settlement date has been implicit scalar-expanded as well.

The second call also applies the default coupon period by explicitly passing a two-element vector of 2's. The third call passes an empty matrix, which cfdates interprets as an invalid period, for which the default value will be used. The fourth call is similar, except that a NaN has been passed. The fifth call passes two NaN's, and has the same effect as the third. The last call passes the minimal input set.

Finally, consider the following calls to cfdates for the same two-bond portfolio.

```
cfdates(Settle, Maturity, [4 NaN])
cfdates(Settle, Maturity, [4 2])
```

The first call explicitly sets Period = 4 for the first bond and implicitly sets the default Period = 2 for the second bond. The second call has the same effect as the first but explicitly sets the periodicity for both bonds.

The optional input Period has been used for illustrative purpose only. The default-handling process illustrated in the examples applies to any of the optional input arguments.

SIA Coupon Date Calculations

Calculating coupon dates, either actual or quasi dates, is notoriously complicated. The Financial Toolbox follows the SIA conventions in coupon date calculations.

The first step in finding the coupon dates associated with a bond is to determine the reference, or synchronization date (the *sync date*). Within the SIA framework, the order of precedence for determining the sync date is (1) the first coupon date, (2) the last coupon date, and finally (3) the maturity date.

In other words, an SIA-compliant function in the Financial Toolbox first examines the FirstCouponDate input. If FirstCouponDate is specified, coupon payment dates and quasi-coupon dates are computed with respect to FirstCouponDate; if FirstCouponDate is unspecified, empty ([]), or NaN, then the LastCouponDate is examined. If LastCouponDate is specified, coupon payment dates and quasi-coupon dates are computed with respect to LastCouponDate. If both FirstCouponDate and LastCouponDate are unspecified, empty ([]), or NaN, the Maturity (a required input argument) serves as the sync date.

SIA Semiannual Yield Conventions

Within the SIA framework, all yields and time factors for price-to-yield conversion are quoted on a semiannual bond basis (see bndprice, bndyield, and cfamounts) regardless of the period of the bond's coupon payments (including zero-coupon bonds). In addition, any yield-related sensitivity (i.e., duration and convexity), when quoted on a periodic basis, assumes semiannual coupon periods. (See bndconvp, bndconvy, bnddurp, and bnddury).

Pricing Functions

This example shows how easily you can compute the price of a bond with an odd first period using the SIA-compliant function bndprice. Assume you have a bond with these characteristics.

Settle	= '11-Nov-1992';
Maturity	= '01-Mar-2005';
IssueDate	= '15-Oct-1992';
FirstCouponDate	= '01-Mar-1993';
CouponRate	= 0.0785;
Yield	= 0.0625;

Allow coupon payment period (Period = 2), day-count basis (Basis = 0), and end-of-month rule (EndMonthRule = 1) to assume the default values. Also, assume there is no odd last coupon date and that the face value of the bond is \$100. Calling the function

```
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, ...
Maturity, [], [], [], IssueDate, FirstCouponDate)
```

returns a price of \$113.60 and accrued interest of \$0.59.

Similar functions compute prices with regular payments, odd first and last periods, as well as prices of Treasury bills and discounted securities such as zero-coupon bonds.

Note bndprice and other SIA-compliant functions use nonlinear formulas to compute the price of a security. For this reason, the Financial Toolbox uses Newton's method when solving for an independent variable within a formula. See any elementary numerical methods textbook for the mathematics underlying Newton's method.

Yield Functions

To illustrate toolbox yield functions, compute the yield of a bond that has odd first and last periods and settlement in the first period. First set up variables for settlement, maturity date, issue, first coupon, and a last coupon date.

Settle	= '12-Jan-2000';
Maturity	= '01-Oct-2001';

```
IssueDate = '01-Jan-2000';
FirstCouponDate = '15-Jan-2000';
LastCouponDate = '15-Apr-2000';
```

Assume a face value of \$100. Specify a purchase price of \$95.70, a coupon rate of 4%, quarterly coupon payments, and a 30/360 day-count convention (Basis = 1).

```
      Price
      = 95.7;

      CouponRate
      = 0.04;

      Period
      = 4;

      Basis
      = 1;

      EndMonthRule
      = 1;
```

Calling the function

```
Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,...
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
```

returns

Yield = 0.0659 (6.60%).

Fixed-Income Sensitivities

The toolbox includes SIA-compliant functions to perform sensitivity analysis such as convexity and the Macaulay and modified durations for fixed-income securities. The Macaulay duration of an income stream, such as a coupon bond, measures how long, on average, the owner waits before receiving a payment. It is the weighted average of the times payments are made, with the weights at time T equal to the present value of the money received at time T. The modified duration is the Macaulay duration discounted by the per-period interest rate; i.e., divided by (1+rate/frequency).

To illustrate, the following example computes the annualized Macaulay and modified durations, and the periodic Macaulay duration for a bond with settlement (12-Jan-2000) and maturity (01-Oct-2001) dates as above, a 5% coupon rate, and a 4.5% yield to maturity. For simplicity, any optional input arguments assume default values (i.e., semiannual coupons, and day-count basis = 0 (actual/actual), coupon payment structure synchronized to the maturity date, and end-of-month payment rule in effect).

```
CouponRate = 0.05;
```

```
Yield = 0.045;
```

```
[ModDuration, YearDuration, PerDuration] = bnddury(Yield,...
CouponRate, Settle, Maturity)
```

The durations are

```
ModDuration = 1.6107 (years)
YearDuration = 1.6470 (years)
PerDuration = 3.2940 (semiannual periods)
```

Note that the semiannual periodic Macaulay duration (PerDuration) is twice the annualized Macaulay duration (YearDuration).

Term Structure of Interest Rates

The toolbox contains several functions to derive and analyze interest rate curves, including data conversion and extrapolation, bootstrapping, and interest-rate curve conversion functions.

One of the first problems in analyzing the term structure of interest rates is dealing with market data reported in different formats. Treasury bills, for example, are quoted with bid and asked bank-discount rates. Treasury notes and bonds, on the other hand, are quoted with bid and asked prices based on \$100 face value. To examine the full spectrum of Treasury securities, analysts must convert data to a single format. Toolbox functions ease this conversion. This brief example uses only one security each; analysts often use 30, 100, or more of each.

First, capture Treasury bill quotes in their reported format

°₀	Maturity	Days	Bid	Ask	AskYield
TBill =	[datenum('12/26/2000')	53	0.0503	0.0499	0.0510];

and then capture Treasury bond quotes in their reported format

```
        %
        Coupon
        Maturity
        Bid
        Ask
        AskYield

        TBond = [0.08875
        datenum(2001,11,5)
        103+4/32
        103+6/32
        0.0564];
```

and note that these quotes are based on a November 3, 2000 settlement date.

Settle = datenum('3-Nov-2000');

Next use the toolbox tbl2bond function to convert the Treasury bill data to Treasury bond format.

```
TBTBond = tbl2bond(TBill)
TBTBond =
0 730846 99.26 99.27 0.05
```

(The second element of TBTBond is the serial date number for December 26, 2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data to set up the overall term structure.

```
TBondsAll = [TBTBond; TBond]

TBondsAll =

0 730846 99.26 99.27 0.05

0.09 731160 103.13 103.19 0.06
```

The toolbox provides a second data-preparation function,tr2bonds, to convert the bond data into a form ready for the bootstrapping functions. tr2bonds generates a matrix of bond information sorted by maturity date, plus vectors of prices and yields.

[Bonds, Prices, Yields] = tr2bonds(TBondsAll);

With this market data, you are now ready to use one of the toolbox bootstrapping functions to derive an implied zero curve. Bootstrapping is a process whereby you begin with known data points and solve for unknown data points using an underlying arbitrage theory. Every coupon bond can be valued as a package of zero-coupon bonds which mimic its cash flow and risk characteristics. By mapping yields-to-maturity for each theoretical zero-coupon bond, to the dates spanning the investment horizon, you can create a theoretical zero-rate curve.

The toolbox provides two bootstrapping functions. zbtprice derives a zero curve from bond data and *prices*, and zbtyield derives a zero curve from bond data and *yields*. Using zbtprice

```
[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)
ZeroRates =
            0.05
            0.06
CurveDates =
            730846
            731160
CurveDates gives the investment horizon.
        datestr(CurveDates)
        ans =
            26-Dec-2000
            05-Nov-2001
```

Additional toolbox functions construct discount, forward, and par yield curves from the zero curve, and vice versa.

```
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...
Settle);
[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);
[PYldRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle);
```

Pricing and Analyzing Equity Derivatives

These toolbox functions compute prices, sensitivities, and profits for portfolios of options or other equity derivatives. They use the Black-Scholes model for European options and the binomial model for American options. Such measures are useful for managing portfolios and for executing collars, hedges, and straddles.

Sensitivity Measures

There are six basic sensitivity measures associated with option pricing: delta, gamma, lambda, rho, theta, and vega — the "greeks." The toolbox provides functions for calculating each sensitivity and for implied volatility.

Delta

Delta of a derivative security is the rate of change of its price relative to the price of the underlying asset. It is the first derivative of the curve that relates the price of the derivative to the price of the underlying security. When delta is large, the price of the derivative is sensitive to small changes in the price of the underlying security.

Gamma

Gamma of a derivative security is the rate of change of delta relative to the price of the underlying asset; i.e., the second derivative of the option price relative to the security price. When gamma is small, the change in delta is small. This sensitivity measure is important for deciding how much to adjust a hedge position.

Lambda

Lambda, also known as the elasticity of an option, represents the percentage change in the price of an option relative to a 1% change in the price of the underlying security.

Rho

Rho is the rate of change in option price relative to the risk-free interest rate.

Theta

Theta is the rate of change in the price of a derivative security relative to time. Theta is usually very small or negative since the value of an option tends to drop as it approaches maturity.

Vega

Vega is the rate of change in the price of a derivative security relative to the volatility of the underlying security. When vega is large the security is sensitive to small changes in volatility. For example, options traders often must decide whether to buy an option to hedge against vega or gamma. The hedge selected usually depends upon how frequently one rebalances a hedge position and also upon the standard deviation of the price of the underlying asset (the volatility). If the standard deviation is changing rapidly, balancing against vega is usually preferable.

Implied Volatility

The implied volatility of an option is the standard deviation that makes an option price equal to the market price. It helps determine a market estimate for the future volatility of a stock and provides the input volatility (when needed) to the other Black-Scholes functions.

Analysis Models

Toolbox functions for analyzing equity derivatives use the Black-Scholes model for European options and the binomial model for American options. The Black-Scholes model makes several assumptions about the underlying securities and their behavior. The binomial model, on the other hand, makes far fewer assumptions about the processes underlying an option. For further explanation, see John Hull's book listed in Appendix A, "Bibliography."

Black-Scholes Model

Using the Black-Scholes model entails several assumptions:

- The prices of the underlying asset follow an Ito process. (See Hull, page 222.)
- The option can be exercised only on its expiration date (European option).
- Short selling is permitted.
- There are no transaction costs.
- All securities are divisible.

- There is no riskless arbitrage.
- Trading is a continuous process.
- The risk-free interest rate is constant and remains the same for all maturities.

If any of these assumptions is untrue, Black-Scholes may not be an appropriate model.

To illustrate toolbox Black-Scholes functions, this example computes the call and put prices of a European option and its delta, gamma, lambda, and implied volatility. The asset price is \$100.00, the exercise price is \$95.00, the risk-free interest rate is 10%, the time to maturity is 0.25 years, the volatility is 0.50, and the dividend rate is 0. Simply executing the toolbox functions

```
[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0);
[CallVal, PutVal] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0);
GammaVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0);
VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0);
[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0);
```

yields:

- The option call price OptCall = \$13.70
- The option put price OptPut = \$6.35
- delta for a call CallVal = 0.6665 and delta for a put PutVal = -0.3335
- gamma GammaVal = 0.0145
- vega VegaVal = 18.1843
- lambda for a call LamCall = 4.8664 and lambda for a put LamPut = -5.2528

Now as a computation check, find the implied volatility of the option using the call option price from blsprice.

```
Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall);
```

The function returns an implied volatility of 0.500, the original blsprice input.

Binomial Model

The binomial model for pricing options or other equity derivatives assumes that the probability over time of each possible price follows a binomial distribution. The basic assumption is that prices can move to only two values, one up and one down, over any short time period. Plotting the two values, and then the subsequent two values each, and then the subsequent two values each, and so on over time, is known as "building a binomial tree." This model applies to American options, which can be exercised any time up to and including their expiration date.

This example prices an American call option using a binomial model. Again, the asset price is \$100.00, the exercise price is \$95.00, the risk-free interest rate is 10%, and the time to maturity is 0.25 years. It computes the tree in increments of 0.05 years, so there are 0.25/0.05 = 5 periods in the example. The volatility is 0.50, this is a call (flag = 1), the dividend rate is 0, and it pays a dividend of \$5.00 after three periods (an ex-dividend date). Executing the toolbox function

```
[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,...
0.05, 0.50, 1, 0, 5.0, 3);
```

returns the tree of prices of the underlying asset

```
StockPrice =
```

100.00	111.27	123.87	137.96	148.69	166.28
0	89.97	100.05	111.32	118.90	132.96
0	0	81.00	90.02	95.07	106.32
0	0	0	72.98	76.02	85.02
0	0	0	0	60.79	67.98
0	0	0	0	0	54.36

and the tree of option values.

OptionPrice =

12.10	19.17	29.35	42.96	54.17	71.28
0	5.31	9.41	16.32	24.37	37.96
0	0	1.35	2.74	5.57	11.32
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

The output from the binomial function is a binary tree. Read the StockPrice matrix this way: column 1 shows the price for period 0, column 2 shows the up and down prices for period 1, column 3 shows the up-up, up-down, and down-down prices for period 2, etc. Ignore the zeros. The OptionPrice matrix

gives the associated option value for each node in the price tree. Ignore the zeros that correspond to a zero in the price tree.

3

Portfolio Analysis

Analyzing Portfolios (p. 3-2)	Managing risk and return.
Portfolio Optimization Functions (p. 3-3)	Tables of functions for portfolio optimization.
Portfolio Construction Examples (p. 3-5)	Constructing portfolios on the efficient frontier.
Portfolio Selection and Risk Aversion (p. 3-8)	Controlling portfolio risk.
Constraint Specification (p. 3-12)	Managing portfolio constraints.
Active Returns and Tracking Error Efficient Frontier (p. 3-20)	Minimize the variance of the difference in returns with respect to a given target portfolio.
Portfolios with Missing Data (p. 3-24)	Finding mean and covariance of data with missing elements.

Analyzing Portfolios

Portfolio managers concentrate their efforts on achieving the best possible trade-off between risk and return. For portfolios constructed from a fixed set of assets, the risk/return profile varies with the portfolio composition. Portfolios that maximize the return, given the risk, or, conversely, minimize the risk for the given return, are called *optimal*. Optimal portfolios define a line in the risk/return plane called the *efficient frontier*.

A portfolio may also have to meet additional requirements to be considered. Different investors have different levels of risk tolerance. Selecting the adequate portfolio for a particular investor is a difficult process. The portfolio manager can hedge the risk related to a particular portfolio along the efficient frontier with partial investment in risk-free assets. The definition of the capital allocation line, and finding where the final portfolio falls on this line, if at all, is a function of

- The risk/return profile of each asset
- The risk-free rate
- The borrowing rate
- The degree of risk aversion characterizing an investor

The Financial Toolbox includes a set of portfolio optimization functions designed to find the portfolio that best meets investor requirements.

Portfolio Optimization Functions

The portfolio optimization functions assist portfolio managers in constructing portfolios that optimize risk and return.

Capital Allocation

portalloc	Computes the optimal risky portfolio on the efficient frontier, based on the risk-free rate, the borrowing rate, and the
	investor's degree of risk aversion. Also generates the capital allocation line, which provides the optimal allocation of funds between the risky portfolio and the risk-free asset.

Efficient Frontier ComputationfrontconComputes portfolios along the efficient frontier for a given
group of assets. The computation is based on sets of
constraints representing the maximum and minimum weights
for each asset, and the maximum and minimum total weight
for specified groups of assets.portoptComputes portfolios along the efficient frontier for a given
group of assets. The computation is based on a set of
user-specified linear constraints. Typically, these constraints
are generated using the constraint specification functions

described below.

Constraint Specification		
portcons	Generates the portfolio constraints matrix for a portfolio of asset investments using linear inequalities. The inequalities are of the type A*Wts' <= b, where Wts is a row vector of weights. The capabilities of portcons are also provided individually by the following functions.	

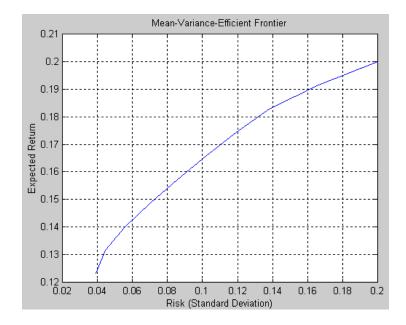
Constraint Specification (continued)		
pcalims	Asset minimum and maximum allocation. Generates a constraint set to fix the minimum and maximum weight for each individual asset.	
pcgcomp	Group-to-group ratio constraint. Generates a constraint set specifying the maximum and minimum ratios between pairs of groups.	
pcglims	Asset group minimum and maximum allocation. Generates a constraint set to fix the minimum and maximum total weight for each defined group of assets.	
pcpval	Total portfolio value. Generates a constraint set to fix the total value of the portfolio.	

Constraint Conversion		
abs2active	Transforms a constraint matrix expressed in absolute weight format to an equivalent matrix expressed in active weight format.	
active2abs	Transforms a constraint matrix expressed in active weight format to an equivalent matrix expressed in absolute weight format.	

Portfolio Construction Examples

The efficient frontier computation functions require information about each asset in the portfolio. This data is entered into the function via two matrices: an expected return vector and a covariance matrix. The expected return vector contains the average expected return for each asset in the portfolio. The covariance matrix is a square matrix representing the interrelationships between pairs of assets. This information can be directly specified or can be estimated from an asset return time series with the function ewstats.

Efficient Frontier Example


This example computes the efficient frontier of portfolios consisting of three different assets using the function frontcon. To visualize the efficient frontier curve clearly, consider 10 different evenly spaced portfolios.

Assume that the expected return of the first asset is 10%, the second is 20%, and the third is 15%. The covariance is defined in the matrix ExpCovariance.

ExpReturn = [0.1 0.2 0.15]; ExpCovariance = [0.005 -0.010 0.004; -0.010 0.040 -0.002; 0.004 -0.002 0.023]; NumPorts = 10;

Since there are no constraints, you can call frontcon directly with the data you already have. If you call frontcon without specifying any output arguments, you get a graph representing the efficient frontier curve.

frontcon (ExpReturn, ExpCovariance, NumPorts);

Calling front con while specifying the output arguments returns the corresponding vectors and arrays representing the risk, return, and weights for each of the 10 points computed along the efficient frontier.

PortReturn =

0.1231 0.1316 0.1402 0.1487 0.1573 0.1658 0.1744 0.1829 0.1915 0.2000

PortWts =

0.7692	0.2308	0.0000
0.6667	0.2991	0.0342
0.5443	0.3478	0.1079
0.4220	0.3964	0.1816
0.2997	0.4450	0.2553
0.1774	0.4936	0.3290
0.0550	0.5422	0.4027
0	0.6581	0.3419
0	0.8291	0.1709
0	1.0000	0.0000

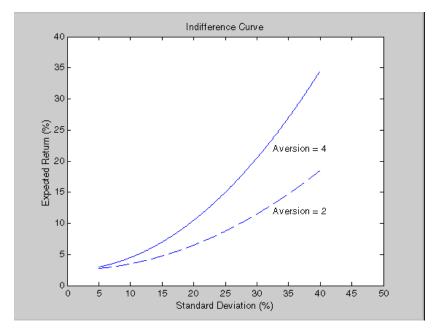
The output data is represented row-wise. Each portfolio's risk, rate of return, and associated weights are identified as corresponding rows in the vectors and matrix.

For example, you can see from these results that the second portfolio has a risk of 0.0445, an expected return of 13.16%, and allocations of about 67% in the first asset, 30% in the second, and 3% in the third.

Portfolio Selection and Risk Aversion

One of the factors to consider when selecting the optimal portfolio for a particular investor is degree of risk aversion. This level of aversion to risk can be characterized by defining the investor's indifference curve. This curve consists of the family of risk/return pairs defining the trade-off between the expected return and the risk. It establishes the increment in return that a particular investor will require in order to make an increment in risk worthwhile. Typical risk aversion coefficients range between 2.0 and 4.0, with the higher number representing lesser tolerance to risk. The equation used to represent risk aversion in the Financial Toolbox is

 $U = E(r) = 0.005 * A * sig^2$


where:

U is the utility value.

E(r) is the expected return.

A is the index of investor's aversion.

sig is the standard deviation.

Optimal Risky Portfolio Example

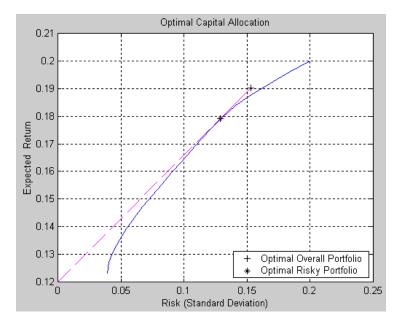
This example computes the optimal risky portfolio on the efficient frontier based upon the risk-free rate, the borrowing rate, and the investor's degree of risk aversion. You do this with the function portalloc.

First generate the efficient frontier data using either portopt or frontcon. This example uses portopt and the same asset data from the previous example.

```
ExpReturn = [0.1 0.2 0.15];
ExpCovariance = [ 0.005 -0.010 0.004;
-0.010 0.040 -0.002;
0.004 -0.002 0.023];
```

This time consider 20 different points along the efficient frontier.

```
NumPorts = 20;
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, NumPorts);
```


As with frontcon, calling portopt while specifying output arguments returns the corresponding vectors and arrays representing the risk, return, and weights for each of the portfolios along the efficient frontier. Use them as the first three input arguments to the function portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds between the risky portfolio and the risk-free asset, using these values for the risk-free rate, borrowing rate and investor's degree of risk aversion.

```
RisklessRate = 0.08
BorrowRate = 0.12
RiskAversion = 3
```

Calling portalloc without specifying any output arguments gives a graph displaying the critical points.

```
portalloc (PortRisk, PortReturn, PortWts, RisklessRate,...
BorrowRate, RiskAversion);
```


Calling portalloc while specifying the output arguments returns the variance (RiskyRisk), the expected return (RiskyReturn), and the weights (RiskyWts) allocated to the optimal risky portfolio. It also returns the fraction

(RiskyFraction) of the complete portfolio allocated to the risky portfolio, and the variance (OverallRisk) and expected return (OverallReturn) of the optimal overall portfolio. The overall portfolio combines investments in the risk-free asset and in the risky portfolio. The actual proportion assigned to each of these two investments is determined by the degree of risk aversion characterizing the investor.

```
[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,...
OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,...
RisklessRate, BorrowRate, RiskAversion)
RiskyRisk = 0.1288
RiskyReturn = 0.1791
RiskyWts = 0.0057 0.5879 0.4064
RiskyFraction = 1.1869
OverallRisk = 0.1529
OverallReturn = 0.1902
```

The value of RiskyFraction exceeds 1 (100%), implying that the risk tolerance specified allows borrowing money to invest in the risky portfolio, and that no money will be invested in the risk-free asset. This borrowed capital is added to the original capital available for investment. In this example the customer will tolerate borrowing 18.69% of the original capital amount.

Constraint Specification

This example computes the efficient frontier of portfolios consisting of three different assets, INTC, XON, and RD, given a list of constraints. The expected returns for INTC, XON, and RD are respectively as follows.

 $ExpReturn = [0.1 \ 0.2 \ 0.15];$

The covariance matrix is

ExpCovariance	=	[0.005	-0.010	0.004;
		-0.010	0.040	-0.002;
		0.004	-0.002	0.023];

Constraint 1. Allow short selling up to 10% of the portfolio value in any asset but limit the investment in any one asset to 110% of the portfolio value.

Constraint 2. Consider two different sectors, technology and energy, with the table below indicating the sector each asset belongs to.

Asset	INTC	XON	RD
Sector	Technology	Energy	Energy

Constrain the investment in the Energy sector to 80% of the portfolio value, and the investment in the Technology sector to 70%.

To solve this problem, use frontcon, passing in a list of asset constraints. Consider eight different portfolios along the efficient frontier.

```
NumPorts = 8;
```

To introduce the asset bounds constraints specified in Constraint 1, create the matrix AssetBounds, where each column represents an asset. The upper row represents the lower bounds, and the lower row represents the upper bounds.

AssetBounds = [-0.10, -0.10, -0.10; 1.10, 1.10, 1.10];

Constraint 2 needs to be entered in two parts, the first part defining the groups, and the second part defining the constraints for each group. Given the information above, you can build a matrix of 1s and 0s indicating whether a specific asset belongs to a group. Each column represents an asset, and each

row represents a group. This example has two groups: the technology group, and the energy group. Create the matrix Groups as follows.

```
Groups = [0 1 1;
1 0 0];
```

The GroupBounds matrix allows you to specify an upper and lower bound for each group. Each row in this matrix represents a group. The first column represents the minimum allocation, and the second column represents the maximum allocation to each group. Since the investment in the Energy sector is capped at 80% of the portfolio value, and the investment in the Technology sector is capped at 70%, create the GroupBounds matrix using this information.

GroupBounds = [0 0.80; 0 0.70];

Now use frontcon to obtain the vectors and arrays representing the risk, return, and weights for each of the eight portfolios computed along the efficient frontier.

```
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts, [], AssetBounds, Groups, GroupBounds)
```

PortRisk =

```
0.0416
0.0499
0.0624
0.0767
0.0920
0.1100
0.1378
0.1716
PortReturn =
0.1279
0.1361
0.1442
0.1524
0.1605
0.1687
```

0.1768 0.1850		
ortWts =		
0.7000	0.2582	0.0418
0.6031	0.3244	0.0725
0.4864	0.3708	0.1428
0.3696	0.4172	0.2132
0.2529	0.4636	0.2835
0.2000	0.5738	0.2262
0.2000	0.7369	0.0631
0.2000	0.9000	-0.1000

Ρ

The output data is represented row-wise, where each portfolio's risk, rate of return, and associated weight is identified as corresponding rows in the vectors and matrix.

Linear Constraint Equations

While frontcon allows you to enter a fixed set of constraints related to minimum and maximum values for groups and individual assets, you often need to specify a larger and more general set of constraints when finding the optimal risky portfolio. The function portopt addresses this need, by accepting an arbitrary set of constraints as an input matrix.

The auxiliary function portcons can be used to create the matrix of constraints, with each row representing an inequality. These inequalities are of the type A*Wts' <= b, where A is a matrix, b is a vector, and Wts is a row vector of asset allocations. The number of columns of the matrix A, and the length of the vector Wts correspond to the number of assets. The number of rows of the matrix A, and the length of vector b correspond to the number of constraints. This method allows you to specify any number of linear inequalities to the function portopt.

In actuality, portcons is an entry point to a set of functions that generate matrices for specific types of constraints. portcons allows you to specify all the constraints data at once, while the specific portfolio constraint functions allow you to build the constraints incrementally. These constraint functions are pcpval, pcalims, pcglims, and pcgcomp.

Consider an example to help understand how to specify constraints to portopt while bypassing the use of portcons. This example requires specifying the minimum and maximum investment in various groups.

Group	Minimum Exposure	Maximum Exposure
North America	0.30	0.75
Europe	0.10	0.55
Latin America	0.20	0.50
Asia	0.50	0.50

Table 3-1: Maximum and Minimum Group Exposure

Note that the minimum and maximum exposure in Asia is the same. This means that you require a fixed exposure for this group.

Also assume that the portfolio consists of three different funds. The correspondence between funds and groups is shown in Table 3-2.

Table 3-2: Group Membership

Group	Fund 1	Fund 2	Fund 3
North America	Х	Х	
Europe			Х
Latin America	Х		
Asia		Х	X

Using the information in these two tables, build a mathematical representation of the constraints represented. Assume that the vector of weights representing the exposure of each asset in a portfolio is called Wts = [W1 W2 W3].

Specifically

1.	W1 + W2	\geq	0.30
2.	W1 + W2	\leq	0.75
3.	W3	≥	0.10
4.	W3	\leq	0.55
5.	W1	≥	0.20
6.	W1	\leq	0.50
7.	W2 + W3	=	0.50

Since you need to represent the information in the form A*Wts <= b, multiply equations 1, 3 and 5 by -1. Also turn equation 7 into a set of two inequalities: $W2 + W3 \ge 0.50$ and $W2 + W3 \le 0.50$ (The intersection of these two inequalities is the equality itself.). Thus

1.	-W1 - W2	≤ -0.30
2.	W1 + W2	≤ 0.75
3.	-W3	≤ -0.10
4.	W3	≤ 0.55
5.	-W1	≤ -0.20
6.	W1	≤ 0.50
7.	-W2 - W3	≤ -0.50
8.	W2 + W3	≤ 0.50

Bringing these equations into matrix notation gives

А	=	[-1	- 1	0;
		1	1	0;
		0	0	-1;
		0	0	1;
		- 1	0	0;
		1	0	0;
		0	- 1	-1;
		0	1	1]
b	=	[-0.30	;	
		0.75	;	
		-0.10	;	
		0.55	;	
		-0.20	;	
		0.50	;	
		-0.50	;	
		0.50]	

Build the constraint matrix ${\tt ConSet}$ by concatenating the matrix ${\tt A}$ to the vector ${\tt b}.$

ConSet = [A, b]

Specifying Additional Constraints

The example above defined a constraints matrix that specified a set of typical scenarios. It defined groups of assets, specified upper and lower bounds for total allocation in each of these groups, and it set the total allocation of one of the groups to a fixed value. Constraints like these are common occurrences. The function portcons was created to simplify the creation of the constraint matrix for these and other common portfolio requirements. portcons takes as input arguments a list of constraint-specifier strings, followed by the data necessary to build the constraint specified by the strings.

Assume that you need to add more constraints to the previous example. Specifically, add a constraint indicating that the sum of weights in any portfolio should be equal to 1, and another set of constraints (one per asset) indicating that the weight for each asset must greater than 0. This translates into five more constraint rows: two for the new equality, and three indicating that each weight must be greater or equal to 0. The total number of inequalities in the example is now 13. Clearly, creating the constraint matrix can turn into a tedious task.

To create the new constraint matrix using portcons, use two separate constraint-specifier strings:

- 'Default', which indicates that each weight is greater than 0 and that the total sum of the weights adds to 1.
- 'GroupLims', which defines the minimum and maximum allocation on each group.

The only data requirement for the constraint-specifier string 'Default' is NumAssets (the total number of assets). The constraint-specifier string 'GroupLims' requires three different arguments: a Groups matrix indicating the assets that belong to each group, the GroupMin vector indicating the minimum bounds for each group, and the GroupMax vector indicating the maximum bounds for each group. Based on Table 3-2, Group Membership, build the Group matrix, with each row representing a group, and each column representing an asset.

Group =	[1	1	0;
	0	0	1;
	1	0	0;
	0	1	1]

Table 3-1, Maximum and Minimum Group Exposure, has the information to build GroupMin and GroupMax.

GroupMin = [0.30 0.10 0.20 0.50]; GroupMax = [0.75 0.55 0.50 0.50];

Given that the number of assets is three, build the constraint matrix by calling portcons.

```
ConSet = portcons('Default', 3, 'GroupLims', Group, GroupMin,...
GroupMax);
```

In most cases, portcons('Default') returns the minimal set of constraints required for calling portopt. If ConSet is not specified in the call to portopt, the function calls portcons passing 'Default' as its only specifier.

Now use portopt to obtain the vectors and arrays representing the risk, return, and weights for the portfolios computed along the efficient frontier.

```
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, [], [], ConSet)
PortRisk = 0.0586
Port Return = 0.1375
PortWts = 0.5 0.25 0.25
```

In this case the constraints allow only one optimum portfolio.

Active Returns and Tracking Error Efficient Frontier

Suppose you wish to identify an efficient set of portfolios that minimize the variance of the difference in returns with respect to a given target portfolio, subject to a given expected excess return. The mean and standard deviation of this excess return are often called the active return and active risk, respectively. Active risk is sometimes referred to as the tracking error. Since the objective is to track a given target portfolio as closely as possible, the resulting set of portfolios is sometimes referred to as the tracking error efficient frontier.

Specifically, assume that the target portfolio is expressed as an index weight vector, such that the index return series may be expressed as a linear combination of the available assets. This example illustrates how to construct a frontier that minimizes the active risk (tracking error) subject to attaining a given level of return. That is, it computes the tracking error efficient frontier.

One way to construct the tracking error efficient frontier is to explicitly form the target return series and subtract it from the return series of the individual assets. In this manner, you specify the expected mean and covariance of the active returns, and compute the efficient frontier subject to the usual portfolio constraints.

This example works directly with the mean and covariance of the absolute (unadjusted) returns but converts the constraints from the usual absolute weight format to active weight format.

Consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on absolute weekly asset returns.

NumAssets = 5; ExpReturn = [0.2074 0.1971 0.2669 0.1323 0.25351/100;Sigmas = [2.6570 3.6297 3.9916 2.7145 2.6133]/100; Correlations = [1.0000 0.6092 0.6321 0.5833 0.7304 0.6092 1.0000 0.8504 0.8038 0.7176 0.6321 0.8504 1.0000 0.7723 0.7236 0.5833 0.8038 0.7723 1.0000 0.7225 0.7304 0.7176 0.7236 0.7225 1.0000];

Convert the correlations and standard deviations to a covariance matrix.

ExpCovariance = corr2cov(Sigmas, Correlations);

Next, assume that the target index portfolio is simply an equally-weighted portfolio formed from the five assets. Note that the sum of index weights equals 1, satisfying the standard full investment budget equality constraint.

Index = ones(NumAssets, 1)/NumAssets;

Generate an asset constraint matrix via portcons. The constraint matrix AbsConSet is expressed in absolute format (unadjusted for the index), and is formatted as [A b], corresponding to constraints of the form $A^*w \leq b$. Each row of AbsConSet corresponds to a constraint, and each column corresponds to an asset. Allow no short-selling and full investment in each asset (lower and upper bounds of each asset are 0 and 1, respectively). In particular, note that the first two rows correspond to the budget equality constraint; the remaining rows correspond to the upper/lower investment bounds.

```
AbsConSet = portcons('PortValue', 1, NumAssets, ...
'AssetLims', zeros(NumAssets,1), ones(NumAssets,1));
```

Now transform the absolute constraints to active constraints with abs2active.

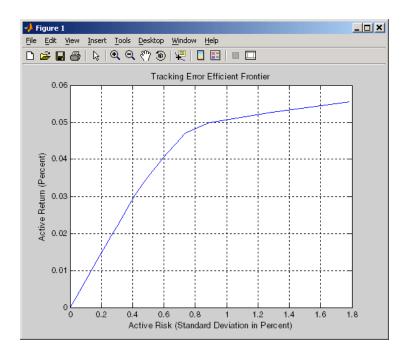
```
ActiveConSet = abs2active(AbsConSet, Index);
```

An examination of the absolute and active constraint matrices reveals that they are differ only in the last column (the columns corresponding to the b in $A*_W \ll b$).

```
[AbsConSet(:,end) ActiveConSet(:,end)]
```

ans =

1.0000	0
-1.0000	0
1.0000	0.8000
1.0000	0.8000
1.0000	0.8000
1.0000	0.8000
1.0000	0.8000
0	0.2000
0	0.2000


0	0.2000
0	0.2000
0	0.2000

In particular, note that the sum-to-one absolute budget constraint becomes a sum-to-zero active budget constraint. The general transformation is as follows:

 $b_{active} = b_{absolute} - A \cdot Index$

Now construct and plot the tracking error efficient frontier with 21 portfolios.

```
[ActiveRisk, ActiveReturn, ActiveWeights] = ...
portopt(ExpReturn,ExpCovariance, 21, [], ActiveConSet);
ActiveRisk = real(ActiveRisk);
plot(ActiveRisk*100, ActiveReturn*100, 'blue')
grid('on')
xlabel('Active Risk (Standard Deviation in Percent)')
ylabel('Active Return (Percent)')
title('Tracking Error Efficient Frontier')
```


Of particular interest is the lower left-hand portfolio along the frontier. This zero-risk/zero-return portfolio has a very practical economic significance. It represents a full investment in the index portfolio itself. Note that each tracking error efficient portfolio (each row in the array ActiveWeights) satisfies the active budget constraint, and thus represents portfolio investment allocations with respect to the index portfolio. To convert these allocations to absolute investment allocations, add the index to each efficient portfolio.

AbsoluteWeights = ActiveWeights + repmat(Index', 21, 1);

Portfolios with Missing Data

There are times when you need to compute statistical values for portfolios, but some of the data is unavailable. The Financial Toolbox provides the function ecmnmle, which computes the mean and covariance of data with missing elements.

The algorithm assumes that missing values are *missing at random* and *non-ignorable*. (See Little and Rubin [1] for precise definitions of these terms.) Asset data that does not exist prior to a certain date, e.g., stock price data prior to an IPO, is an example where ecmnmle is appropriate. MATLAB represents these unavailable values as NaN. For a counterexample, consider censored data, in which all values greater than some cutoff are replaced with NaNs. This type of data does not satisfy the conditions under which you can use ecmnmle.

The general model that ecmnmle solves estimates the mean m and covariance C of a collection of independent identically-distributed observations of an n-dimensional multivariate normal random variable

 $Z \sim N(m, C)$

with *m* observations $z(1), \ldots, z(m)$ of the random variable *Z*.

The collection of observations (or samples) is stored in a MATLAB matrix $\ensuremath{\mathsf{Data}}$ such that

Data(i, :) = $z(i)^T$

for i = 1, ..., m, where Data is an m-by-n matrix.

Implementation of ecmnmle

The function ecmnmle obtains estimates for the mean (m) and the covariance (C) of Data with NumSamples = m samples and NumSeries = n random variables. If data is missing, this routine implements the ECM algorithm of Meng and Rubin [2] with enhancements by Sexton and Swensen [3]. ECM stands for *expectation conditional maximization*, a conditional maximization form of the EM algorithm of Dempster, Laird, and Rubin [4].

If a record is empty, i.e., every value in a sample is NaN, this routine ignores the record since the record contributes no information. If such records exist in the data, the number of nonempty samples used in the estimation (*Count*) is $Count \leq \text{NumSamples}$.

The estimate for the covariance is a biased maximum likelihood estimate (MLE). To formally evaluate standard errors, it is important to construct unbiased estimates. To convert to an unbiased estimate, multiply the covariance by Count/(Count-1).

Requirements

This routine has several requirements:

- Consistent values for NumSamples and NumSeries with NumSamples > NumSeries
- Enough nonmissing values to converge
- Positive definite covariance matrix

Although you can find some necessary and sufficient conditions in the references, general conditions for existence and uniqueness of solutions in the missing-data case do not exist. The main failure mode is an ill-conditioned covariance matrix estimate, which is discussed below in greater detail. Nonetheless, this routine works for most cases that have no more than 15% of total data with missing values (typical for most financial applications).

Technology Stock Example

This example illustrates the use of the missing data algorithm. It loads in five years of daily total return data for 12 computer technology stocks with 6 hardware and 6 software companies. The example estimates the mean and covariance matrix for these stocks, forms efficient frontiers with both a naïve approach and the ECM approach, and compares results.

You can run the example directly with ecmtechdemo. The steps presented here illustrate the process.

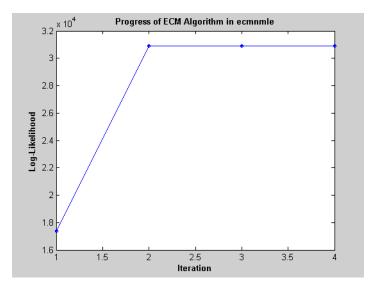
To begin the example, load in the data file.

load ecmtechdemo

This file contains three quantities:

- Assets: a cell array of the tickers for the 12 stocks in the example
- Data: a 1254-by-12 matrix of 1254 daily total returns for each of the 12 stocks
- Dates: a 1254-by-1 column vector of the dates associated with the data. The time period extends from April 19, 2000 to April 18, 2005.

The sixth stock in Assets is Google (GOOG), which started trading on August 19, 2004. Consequently, all returns prior to August 20, 2004 are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values scattered throughout the past five years.


A naïve approach to the estimation of the mean and covariance for these 12 assets is to eliminate all days that have missing values for any of the 12 assets. Use the function ecmninit with the nanskip option to accomplish this.

```
[NaNMean, NaNCovar] = ecmninit(Data, 'nanskip');
```

Contrast the result of this approach with using all available data and the function ecmnmle to compute the mean and covariance. First, call ecmnmle with no output arguments to establish that sufficient data is available to obtain meaningful estimates.

ecmnmle(Data);

The figure shows that, even with almost 87% of the Google data being NaN values, the algorithm converges after only four iterations.

Now estimate the mean and covariance as computed by ecmnmle.

[ECMMean, ECMCovar] = ecmnmle(Data) ECMMean = 0.0008 0.0008 -0.0005 0.0002 0.0011 0.0038 -0.0003 -0.0000 -0.0003 -0.0000 -0.0003 0.0004 ECMCovar = 0.0012 0.0005 0.0006 0.0005 0.0005 0.0003 0.0005 0.0024 0.0007 0.0006 0.0010 0.0004 0.0006 0.0007 0.0013 0.0007 0.0007 0.0003 0.0005 0.0006 0.0007 0.0009 0.0006 0.0002 0.0005 0.0010 0.0007 0.0006 0.0016 0.0006 0.0003 0.0004 0.0003 0.0002 0.0006 0.0022 0.0005 0.0005 0.0006 0.0005 0.0005 0.0001 0.0003 0.0003 0.0003 0.0004 0.0003 0.0002 0.0006 0.0006 0.0008 0.0007 0.0006 0.0002 0.0003 0.0004 0.0005 0.0004 0.0004 0.0001 0.0005 0.0006 0.0008 0.0005 0.0007 0.0003 0.0011 0.0006 0.0012 0.0008 0.0007 0.0016 0.0005 0.0003 0.0003 0.0005 0.0006 0.0006 0.0005 0.0003 0.0006 0.0004 0.0006 0.0012 0.0006 0.0004 0.0008 0.0005 0.0008 0.0008 0.0005 0.0003 0.0007 0.0004 0.0005 0.0007 0.0005 0.0003 0.0004 0.0007 0.0006 0.0011 0.0001 0.0002 0.0002 0.0001 0.0003 0.0016 0.0009 0.0003 0.0005 0.0004 0.0005 0.0006 0.0003 0.0005 0.0004 0.0003 0.0004 0.0004

0.0005

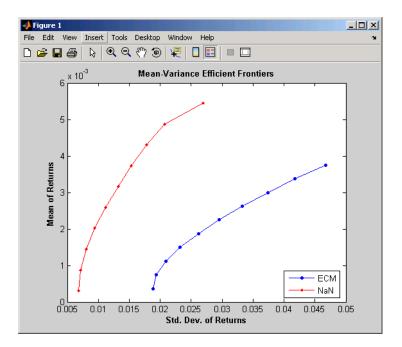
0.0007

0.0007

0.0004

0.0011

0.0005


0.0004	0.0003	0.0005	0.0006	0.0004	0.0005
0.0005	0.0004	0.0007	0.0004	0.0013	0.0007
0.0006	0.0004	0.0007	0.0005	0.0007	0.0020

Given these estimates for the mean and covariance of asset returns derived from both the naïve and the ECM approaches, estimate portfolios and associated expected returns and risks on the efficient frontier for both approaches.

```
[ECMRisk, ECMReturn, ECMWts] = portopt(ECMMean',ECMCovar,10);
[NaNRisk, NaNReturn, NaNWts] = portopt(NaNMean',NaNCovar,10);
```

Finally, plot the results on the same graph to illustrate the differences.

```
figure(gcf)
plot(ECMRisk, ECMReturn,'-bo','MarkerFaceColor', 'b',...
'MarkerSize', 3);
hold all
plot(NaNRisk, NaNReturn, '-r*', 'MarkerFaceColor',' r',...
'MarkerSize', 3);
title('\bfMean-Variance Efficient Frontiers');
legend('ECM','NaN','Location','SouthEast');
xlabel('\bfStd. Dev. of Returns');
ylabel('\bfMean of Returns');
hold off
```


Clearly, the naïve approach, displayed by the leftmost plot, is extremely optimistic about the risk-return tradeoffs for this universe of 12 technology stocks. The proof, however, lies in the portfolio weights. To view the weights, enter

```
Assets
ECMWts
NaNWts
which generates
Assets =
Columns 1 through 8
'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG' 'HPQ' 'IBM'
Columns 9 through 12
'INTC' 'MSFT' 'ORCL' 'YHOO'
```

ECMWts =Columns 1 through 8 0.0358 0.0011 0.0000 0.0000 0.0989 0.4676 -0.0000 0.0535 0.0654 0.0110 0.0000 -0.0000 -0.0000 0.1877 0.0179 0.3899 0.0923 0.0194 0.0000 0.0000 -0.0000 0.2784 0.0000 0.3025 0.0264 0.3712 0.2054 0.1165 -0.0000 0 -0.0000 0.0000 0.1407 0.0334 0.0000 0 0.0000 0.4639 0.0000 0.1083 0.1648 0.0403 0.0000 0 -0.0000 0.5566 0.0000 0.0111 0.1755 0.0457 0.0000 0.0000 0.0000 0.6532 0.0000 0.0000 0.1845 0.0509 0.0000 0.7502 0.0000 -0.0000 -0.0000 0 0.1093 0.0174 -0.0000 0 0.8733 0.0000 -0.0000 0 0.0000 -0.0000 0 -0.0000 0.0000 -0.0000 1.0000 0 Columns 9 through 12 0.0000 -0.0000 0.3431 0.0000 -0.0000 0.3282 0.0000 -0.0000 -0.0000 0.3074 0.0000 -0.0000 -0.0000 0.2806 0.0000 -0.0000 -0.0000 0.2538 -0.0000 0.0000 -0.0000 0.2271 -0.0000 0.0000 -0.0000 0.1255 -0.0000 0.0000 -0.0000 0.0143 -0.0000 -0.0000 -0.0000 0 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 NaNWts = Columns 1 through 8 -0.0000 0.0000 -0.0000 0.1185 0.0000 0.0522 0.0824 0.1779 0.0576 -0.0000 -0.0000 0.1219 0.0000 0.0854 0.1274 0.0460 0.1248 -0.0000 -0.0000 0.0952 0.0000 0.1195 0.1674 -0.0000 0.1969 -0.0000 -0.0000 0.0529 0.0000 0.1551 0.2056 -0.0000 0.2690 -0.0000 -0.0000 0.0105 0.0000 0.1906 0.2438 -0.0000 0.3414 -0.0000 -0.0000 -0.0000 0.0000 0.2265 0.2782 -0.0000 0.4235 -0.0000 -0.0000 0.0000 0.0000 0.2639 0.2788 -0.0000 0.5245 0.0000 -0.0000 -0.0000 0.0000 0.3034 0.1721 -0.0000

0.6269	-0.0000	-0.0000	0.0000 -	0.0000	0.3425	0.0306	0.0000
1.0000	-0.0000	-0.0000	0.0000 -	0.0000	0	0	0.0000
Columns	9 through	า 12					
0.0000	0.5691	-0.0000	0.00	000			
0.0000	0.5617	-0.0000	0.00	000			
0.0000	0.4802	0.0129	9 0.00	000			
0.0000	0.3621	0.0274	ŧ 0.00	000			
0.0000	0.2441	0.0419	9 -0.00	000			
0.0000	0.0988	0.0551	-0.00	000			
0.0000	0.0000	0.0337	-0.00	000			
0.0000	0.0000	0.0000	-0.00	000			
0.0000	-0.0000	-0.0000	-0.00	000			
0.0000	-0.0000	-0.0000	-0.00	000			

The naïve portfolios in NaNWts tend to favor Apple Computer (AAPL), which happened to do well over the period from the Google IPO to the end of the estimation period, while the ECM portfolios in ECMWts tend to underweight Apple and to recommend increased weights in Google relative to the naïve weights.

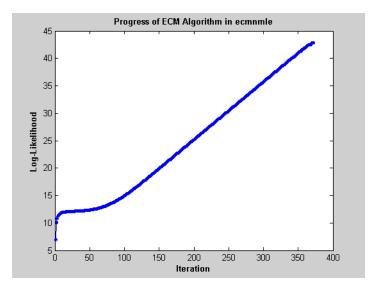
To evaluate the impact of estimation error and, in particular, the effect of missing data, use ecmnstd to calculate standard errors. Although it is possible to estimate the standard errors for both the mean and covariance, the standard errors for the mean estimates alone are usually the main quantities of interest.

The theoretical lower-bound estimate for standard errors is derived from the Fisher information matrix, computed by ecmnstd with the fisher option.

```
StdMeanF = ecmnstd(Data, ECMMean, ECMCovar, 'fisher');
```

Now, calculate standard errors that use the data-generated Hessian matrix (which accounts for the possible loss of information due to missing data). Compute this standard error by ecmnstd with the hessian option.

```
StdMeanH = ecmnstd(Data, ECMMean, ECMCovar, 'hessian');
```


The difference in the standard errors shows the increase in uncertainty of estimation of expected returns resulting from missing data. You can view this difference by entering

```
Assets
StdMeanH'
StdMeanF'
StdMeanH' - StdMeanF'
```

The two assets with NaNs, AMZN and GOOG, are the only assets to have differences caused by the missing information.

Failure of ecmnmle

Although ecmnmle works for most "typical" cases, it can fail. Failures frequently derive from an ill-conditioned covariance matrix. Failures may be soft or hard. A *soft failure* randomly moves toward a very nearly singular covariance matrix. You can spot a soft failure if the algorithm fails to converge after about 100 iterations. If you increase MaxIterations to, say, 500 and initiate display mode (no outputs from ecmnmle), a typical soft failure looks like this.

This case, which is based on 20 observations of 5 assets with 30% of data missing, shows that the log-likelihood goes somewhat linearly to infinity as the likelihood function goes to zero. In this case, ecmnmle converges, but the covariance matrix is effectively singular with a smallest eigenvalue on the order of machine precision (eps).

A hard failure looks like this.

```
In ecmninit at 60
In ecmnmle at 140
??? Error using ==> ecmnmle
Full covariance not positive-definite in iteration 218.
```

From a practical standpoint, if in doubt, test the covariance matrix from ecmnmle to ensure that it is positive-definite, especially since a soft error has a matrix that appears to be positive-definite but actually has a near-zero-valued eigenvalue to within machine precision. To do this with a covariance estimate Covar, use cond(Covar), where any value greater than 1/eps is suspect.

If either type of failure occurs, however, ecmnmle is indicating that something is probably wrong with the data. For example, even with no missing data, two time series that are proportional have a nonpositive-definite covariance matrix.

References

[1] Little, Roderick J. A. and Donald B. Rubin, *Statistical Analysis with Missing Data*, 2nd ed., John Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li and Donald B. Rubin, "Maximum Likelihood Estimation via the ECM Algorithm," *Biometrika*, Vol. 80, No. 2, 1993, pp. 267-278.

[3] Sexton, Joe and Anders Rygh Swensen, "ECM Algorithms That Converge at the Rate of EM," *Biometrika*, Vol. 87, No. 3, 2000, pp. 651-662.

[4] Dempster, A. P., N. M. Laird, and Donald B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," *Journal of the Royal Statistical Society*, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

Solving Sample Problems

Common Problems in Finance (p. 4-3) Producing Graphics with the Toolbox (p. 4-19) Problems involving bond portfolios and equity options. Use of MATLAB graphics to illustrate financial data. This section shows how Financial Toolbox functions solve real-world problems. The examples ship with the toolbox as M-files. Try them by entering the commands directly or by executing the M-files.

This chapter contains two major topics:

• "Common Problems in Finance" on page 4-3

This section shows how the toolbox solves real-world financial problems.

- "Sensitivity of Bond Prices to Changes in Interest Rates" on page 4-3
- "Constructing a Bond Portfolio to Hedge Against Duration and Convexity" on page 4-6
- "Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve" on page 4-8
- "Constructing Greek-Neutral Portfolios of European Stock Options" on page 4-12
- "Term Structure Analysis and Interest Rate Swap Pricing" on page 4-15
- "Producing Graphics with the Toolbox" on page 4-19

This section shows how the toolbox produces presentation-quality graphics by solving these problems:

- "Plotting an Efficient Frontier" on page 4-19
- "Plotting Sensitivities of an Option" on page 4-21
- "Plotting Sensitivities of a Portfolio of Options" on page 4-23

Common Problems in Finance

Sensitivity of Bond Prices to Changes in Interest Rates

Macaulay and *modified duration* measure the sensitivity of a bond's price to changes in the level of interest rates. *Convexity* measures the change in duration for small shifts in the yield curve, and thus measures the second-order price sensitivity of a bond. Both measures can gauge the vulnerability of a bond portfolio's value to changes in the level of interest rates.

Alternatively, analysts can use duration and convexity to construct a bond portfolio that is partly hedged against small shifts in the term structure. If you combine bonds in a portfolio whose duration is zero, the portfolio is insulated, to some extent, against interest rate changes. If the portfolio convexity is also zero, this insulation is even better. However, since hedging costs money or reduces expected return, you need to know how much protection results from hedging duration alone compared with hedging both duration and convexity.

This example demonstrates a way to analyze the relative importance of duration and convexity for a bond portfolio using some of the SIA-compliant bond functions in the Financial Toolbox. Using duration, it constructs a first-order approximation of the change in portfolio price to a level shift in interest rates. Then, using convexity, it calculates a second-order approximation. Finally it compares the two approximations with the true price change resulting from a change in the yield curve. The example M-file is ftspex1.m.

Step 1. Define three bonds using values for the settlement date, maturity date, face value, and coupon rate. For simplicity, accept default values for the coupon payment periodicity (semiannual), end-of-month payment rule (rule in effect), and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (no odd first or last coupon dates). Any inputs for which defaults are accepted are set to empty matrices ([]) as placeholders where appropriate.

```
Settle = '19-Aug-1999';
Maturity = ['17-Jun-2010'; '09-Jun-2015'; '14-May-2025'];
Face = [100; 100; 1000];
CouponRate = [0.07; 0.06; 0.045];
```

Also, specify the yield curve information.

Yields = [0.05; 0.06; 0.065];

Step 2. Use Financial Toolbox functions to calculate the price, modified duration in years, and convexity in years of each bond.

The true price is quoted (clean) price plus accrued interest.

```
[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], Face);
Durations = bnddury(Yields, CouponRate, Settle, Maturity, 2,
0,... [], [], [], [], Face);
Convexities = bndconvy(Yields, CouponRate, Settle, Maturity,2,
0,... [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;
```

Step 3. Choose a hypothetical amount by which to shift the yield curve (here, 0.2 percentage point or 20 basis points).

dY = 0.002;

Weight the three bonds equally, and calculate the actual quantity of each bond in the portfolio, which has a total value of \$100,000.

```
PortfolioPrice = 100000;
PortfolioWeights = ones(3,1)/3;
PortfolioAmounts = PortfolioPrice * PortfolioWeights ./ Prices;
```

Step 4. Calculate the modified duration and convexity of the portfolio. Note that the portfolio duration or convexity is a weighted average of the durations or convexities of the individual bonds. Calculate the first- and second-order approximations of the percent price change as a function of the change in the level of interest rates.

```
PortfolioDuration = PortfolioWeights' * Durations;
PortfolioConvexity = PortfolioWeights' * Convexities;
PercentApprox1 = -PortfolioDuration * dY * 100;
PercentApprox2 = PercentApprox1 + ...
PortfolioConvexity*dY^2*100/2.0;
```

Step 5. Estimate the new portfolio price using the two estimates for the percent price change.

```
PriceApprox1 = PortfolioPrice + ...
PercentApprox1 * PortfolioPrice/100;
PriceApprox2 = PortfolioPrice + ...
PercentApprox2 * PortfolioPrice/100;
```

Step 6. Calculate the true new portfolio price by shifting the yield curve.

```
[CleanPrice, AccruedInterest] = bndprice(Yields + dY,...
CouponRate, Settle, Maturity, 2, 0, [], [], [], [], [],...
Face);
```

NewPrice = PortfolioAmounts' * (CleanPrice + AccruedInterest);

Step 7. Compare the results. The analysis results are as follows (verify these results by running the example M-file ftspex1.m):

- The original portfolio price was \$100,000.
- The yield curve shifted up by 0.2 percentage point or 20 basis points.
- The portfolio duration and convexity are 10.3181 and 157.6346, respectively. These will be needed below for "Constructing a Bond Portfolio to Hedge Against Duration and Convexity".
- The first-order approximation, based on modified duration, predicts the new portfolio price (PriceApprox1) will be \$97,936.37.
- The second-order approximation, based on duration and convexity, predicts the new portfolio price (PriceApprox2) will be \$97,967.90.
- The true new portfolio price (NewPrice) for this yield curve shift is \$97,967.51.
- The estimate using duration and convexity is quite good (at least for this fairly small shift in the yield curve), but only slightly better than the estimate using duration alone. The importance of convexity increases as the magnitude of the yield curve shift increases. Try a larger shift (dY) to see this effect.

The approximation formulas in this example consider only parallel shifts in the term structure, because both formulas are functions of dY, the change in yield.

The formulas are not well-defined unless each yield changes by the same amount. In actual financial markets, changes in yield curve level typically explain a substantial portion of bond price movements. However, other changes in the yield curve, such as slope, may also be important and are not captured here. Also, both formulas give local approximations whose accuracy deteriorates as dY increases in size. You can demonstrate this by running the program with larger values of dY.

Constructing a Bond Portfolio to Hedge Against Duration and Convexity

This example constructs a bond portfolio to hedge the portfolio of "Sensitivity of Bond Prices to Changes in Interest Rates." It assumes a long position in (holding) the portfolio, and that three other bonds are available for hedging. It chooses weights for these three other bonds in a new portfolio so that the duration and convexity of the new portfolio match those of the original portfolio. Taking a short position in the new portfolio, in an amount equal to the value of the first portfolio, partially hedges against parallel shifts in the yield curve.

Recall that portfolio duration or convexity is a weighted average of the durations or convexities of the individual bonds in a portfolio. As in the previous example, this example uses modified duration in years and convexity in years. The hedging problem therefore becomes one of solving a system of linear equations, which is very easy to do in MATLAB. The M-file for this example is ftspex2.m.

Step 1. Define three bonds available for hedging the original portfolio. Specify values for the settlement date, maturity date, face value, and coupon rate. For simplicity, accept default values for the coupon payment periodicity (semiannual), end-of-month payment rule (rule in effect), and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (i.e., no odd first or last coupon dates). Set any inputs for which defaults are accepted to empty matrices ([]) as placeholders where appropriate. The intent is to hedge against duration and convexity as well as constrain total portfolio price.

```
Settle = '19-Aug-1999';
Maturity = ['15-Jun-2005'; '02-Oct-2010'; '01-Mar-2025'];
Face = [500; 1000; 250];
CouponRate = [0.07; 0.066; 0.08];
```

Also, specify the yield curve for each bond.

Yields = [0.06; 0.07; 0.075];

Step 2. Use Financial Toolbox functions to calculate the price, modified duration in years, and convexity in years of each bond.

The true price is quoted (clean price plus accrued interest.

```
[CleanPrice, AccruedInterest] = bndprice(Yields,CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], Face);
Durations = bnddury(Yields, CouponRate, Settle, Maturity,...
2, 0, [], [], [], [], Face);
Convexities = bndconvy(Yields, CouponRate, Settle,...
Maturity, 2, 0, [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;
```

Step 3. Set up and solve the system of linear equations whose solution is the weights of the new bonds in a new portfolio with the same duration and convexity as the original portfolio. In addition, scale the weights to sum to 1; that is, force them to be portfolio weights. You can then scale this unit portfolio to have the same price as the original portfolio. Recall that the original portfolio duration and convexity are 10.3181 and 157.6346, respectively. Also, note that the last row of the linear system ensures the sum of the weights is unity.

Step 4. Compute the duration and convexity of the hedge portfolio, which should now match the original portfolio.

```
PortfolioDuration = Weights' * Durations;
PortfolioConvexity = Weights' * Convexities;
```

Step 5. Finally, scale the unit portfolio to match the value of the original portfolio and find the number of bonds required to insulate against small parallel shifts in the yield curve.

```
PortfolioValue = 100000;
HedgeAmounts = Weights ./ Prices * PortfolioValue;
```

Step 6. Compare the results. (Verify the analysis results by running the example M-file ftspex2.m.)

- As required, the duration and convexity of the new portfolio are 10.3181 and 157.6346, respectively.
- The hedge amounts for bonds 1, 2, and 3 are -57.37, 71.70, and 216.27, respectively.

Notice that the hedge matches the duration, convexity, and value (\$100,000) of the original portfolio. If you are holding that first portfolio, you can hedge by taking a short position in the new portfolio.

Just as the approximations of the first example are appropriate only for small parallel shifts in the yield curve, the hedge portfolio is appropriate only for reducing the impact of small level changes in the term structure.

Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve

Often bond portfolio managers want to consider more than just the sensitivity of a portfolio's price to a small shift in the yield curve, particularly if the investment horizon is long. This example shows how MATLAB can visualize the price behavior of a portfolio of bonds over a wide range of yield curve scenarios, and as time progresses toward maturity.

This example uses the Financial Toolbox bond pricing functions to evaluate the impact of time-to-maturity and yield variation on the price of a bond portfolio. It plots the portfolio value and shows the behavior of bond prices as yield and time vary. This example M-file is ftspex3.m.

Step 1. Specify values for the settlement date, maturity date, face value, coupon rate, and coupon payment periodicity of a four-bond portfolio. For simplicity, accept default values for the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). Also, synchronize the coupon payment structure to the maturity date (no odd first or last coupon dates). Any

inputs for which defaults are accepted are set to empty matrices ([]) as placeholders where appropriate.

```
Settle = '15-Jan-1995';
Maturity = datenum(['03-Apr-2020'; '14-May-2025'; ...
'09-Jun-2019'; '25-Feb-2019']);
Face = [1000; 1000; 1000; 1000];
CouponRate = [0; 0.05; 0; 0.055];
Periods = [0; 2; 0; 2];
```

Also, specify the points on the yield curve for each bond.

Yields = [0.078; 0.09; 0.075; 0.085];

Step 2. Use Financial Toolbox functions to calculate the true bond prices as the sum of the quoted price plus accrued interest.

```
[CleanPrice, AccruedInterest] = bndprice(Yields,...
CouponRate,Settle, Maturity, Periods,...
[], [], [], [], [], Face);
Prices = CleanPrice + AccruedInterest;
```

Step 3. Assume the value of each bond is \$25,000, and determine the quantity of each bond such that the portfolio value is \$100,000.

BondAmounts = 25000 ./ Prices;

Step 4. Compute the portfolio price for a rolling series of settlement dates over a range of yields. The evaluation dates occur annually on January 15, beginning on 15-Jan-1995 (settlement) and extending out to 15-Jan-2018. Thus, this step evaluates portfolio price on a grid of time of progression (dT) and interest rates (dY).

```
dy = -0.05:0.005:0.05; % Yield changes
D = datevec(Settle); % Get date components
dt = datenum(D(1):2018, D(2), D(3)); % Get evaluation dates
[dT, dY] = meshgrid(dt, dy); % Create grid
NumTimes = length(dt); % Number of time steps
NumYields = length(dy); % Number of yield changes
NumBonds = length(Maturity); % Number of bonds
```

```
% Preallocate vector
Prices = zeros(NumTimes*NumYields, NumBonds);
```

Now that the grid and price vectors have been created, compute the price of each bond in the portfolio on the grid one bond at a time.

```
for i = 1:NumBonds
   [CleanPrice, AccruedInterest] = bndprice(Yields(i)+...
   dY(:), CouponRate(i), dT(:), Maturity(i), Periods(i),...
   [], [], [], [], [], Face(i));
  Prices(:,i) = CleanPrice + AccruedInterest;
```

end

Scale the bond prices by the quantity of bonds.

Prices = Prices * BondAmounts;

Reshape the bond values to conform to the underlying evaluation grid.

Prices = reshape(Prices, NumYields, NumTimes);

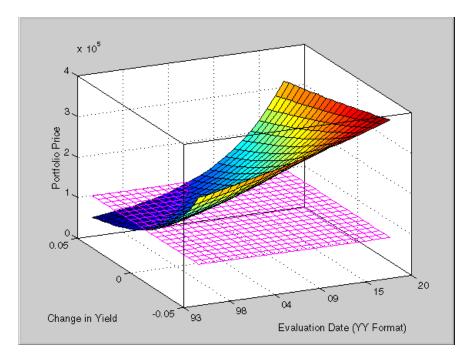
Step 5. Plot the price of the portfolio as a function of settlement date and a range of yields, and as a function of the change in yield (dY). This plot illustrates the interest rate sensitivity of the portfolio as time progresses (dT), under a range of interest rate scenarios. With the following graphics commands, you can visualize the three-dimensional surface relative to the current portfolio value (i.e., \$100,000).

figure			90	0pen	а	new	figure	window
surf(dt,	dy,	Prices)	90	Draw	tł	ne si	urface	

Add the base portfolio value to the existing surface plot.

hold on	% Add the current value for reference
<pre>basemesh = mesh(dt, dy</pre>	, 100000*ones(NumYields, NumTimes));

Make it transparent, plot it so the price surface shows through, and draw a box around the plot.


```
set(basemesh, 'facecolor', 'none');
set(basemesh, 'edgecolor', 'm');
set(gca, 'box', 'on');
```

Plot the *x*-axis using two-digit year (YY format) labels for ticks.

```
dateaxis('x', 11);
```

Add axis labels and set the three-dimensional viewpoint. MATLAB produces the figure.

```
xlabel('Evaluation Date (YY Format)');
ylabel('Change in Yield');
zlabel('Portfolio Price');
hold off
view(-25,25);
```


MATLAB three-dimensional graphics allow you to visualize the interest rate risk experienced by a bond portfolio over time. This example assumed parallel

shifts in the term structure, but it might similarly have allowed other components to vary, such as the level and slope.

Constructing Greek-Neutral Portfolios of European Stock Options

The option sensitivity measures familiar to most option traders are often referred to as the *greeks*: *delta*, *gamma*, *vega*, *lambda*, *rho*, and *theta*. Delta is the price sensitivity of an option with respect to changes in the price of the underlying asset. It represents a first-order sensitivity measure analogous to duration in fixed income markets. Gamma is the sensitivity of an option's delta to changes in the price of the underlying asset, and represents a second-order price sensitivity analogous to convexity in fixed income markets. Vega is the price sensitivity of an option with respect to changes in the volatility of the underlying asset. See "Pricing and Analyzing Equity Derivatives" on page 2-33 or the "Glossary" for other definitions.

The greeks of a particular option are a function of the model used to price the option. However, given enough different options to work with, a trader can construct a portfolio with any desired values for its greeks. For example, to insulate the value of an option portfolio from small changes in the price of the underlying asset, one trader might construct an option portfolio whose delta is zero. Such a portfolio is then said to be "delta neutral." Another trader may wish to protect an option portfolio from larger changes in the price of the underlying asset, and so might construct a portfolio whose delta and gamma are both zero. Such a portfolio is both delta and gamma neutral. A third trader may wish to construct a portfolio insulated from small changes in the volatility of the underlying asset in addition to delta and gamma neutrality. Such a portfolio is then delta, gamma, and vega neutral.

Using the Black-Scholes model for European options, this example creates an equity option portfolio that is simultaneously delta, gamma, and vega neutral. The value of a particular greek of an option portfolio is a weighted average of the corresponding greek of each individual option. The weights are the quantity of each option in the portfolio. Hedging an option portfolio thus involves solving a system of linear equations, an easy process in MATLAB. This example M-file is ftspex4.m.

Step 1. Create an input data matrix to summarize the relevant information. Each row of the matrix contains the standard inputs to the Financial Toolbox Black-Scholes suite of functions: column 1 contains the current price of the

underlying stock; column 2 the strike price of each option; column 3 the time to-expiry of each option in years; column 4 the annualized stock price volatility; and column 5 the annualized dividend rate of the underlying asset. Note that rows 1 and 3 are data related to call options, while rows 2 and 4 are data related to put options.

DataMatrix = [100.000]	100	0.2	0.3	0	% Call
119.100	125	0.2	0.2	0.025	% Put
87.200	85	0.1	0.23	0	% Call
301.125	315	0.5	0.25	0.0333]	% Put

Also, assume the annualized risk-free rate is 10 percent and is constant for all maturities of interest.

RiskFreeRate = 0.10;

For clarity, assign each column of DataMatrix to a column vector whose name reflects the type of financial data in the column.

StockPrice	=	<pre>DataMatrix(:,1);</pre>
StrikePrice	=	<pre>DataMatrix(:,2);</pre>
ExpiryTime	=	<pre>DataMatrix(:,3);</pre>
Volatility	=	<pre>DataMatrix(:,4);</pre>
DividendRate	=	<pre>DataMatrix(:,5);</pre>

Step 2. Based on the Black-Scholes model, compute the prices, as well as the delta, gamma, and vega sensitivity greeks of each of the four options. Note that the functions blsprice and blsdelta have two outputs, while blsgamma and blsvega have only one. The price and delta of a call option differ from the price and delta of an otherwise equivalent put option, in contrast to the gamma and vega sensitivities, which are valid for both calls and puts.

```
[CallPrices, PutPrices] = blsprice(StockPrice, StrikePrice,...
RiskFreeRate, ExpiryTime, Volatility, DividendRate);
[CallDeltas, PutDeltas] = blsdelta(StockPrice,...
StrikePrice, RiskFreeRate, ExpiryTime, Volatility,...
DividendRate);
Gammas = blsgamma(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility, DividendRate)';
```

```
Vegas = blsvega(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';
```

Extract the prices and deltas of interest to account for the distinction between call and puts.

```
Prices = [CallPrices(1) PutPrices(2) CallPrices(3)...
PutPrices(4)];
Deltas = [CallDeltas(1) PutDeltas(2) CallDeltas(3)...
```

PutDeltas(4)];

Step 3. Now, assuming an arbitrary portfolio value of \$17,000, set up and solve the linear system of equations such that the overall option portfolio is simultaneously delta, gamma, and vega-neutral. The solution computes the value of a particular greek of a portfolio of options as a weighted average of the corresponding greek of each individual option in the portfolio. The system of equations is solved using the backslash (\) operator discussed in "Solving Simultaneous Linear Equations" on page 1-13.

```
A = [Deltas; Gammas; Vegas; Prices];
b = [0; 0; 0; 17000];
OptionQuantities = A\b; % Quantity (number) of each option.
```

Step 4. Finally, compute the market value, delta, gamma, and vega of the overall portfolio as a weighted average of the corresponding parameters of the component options. The weighted average is computed as an inner product of two vectors.

```
PortfolioValue = Prices * OptionQuantities;
PortfolioDelta = Deltas * OptionQuantities;
PortfolioGamma = Gammas * OptionQuantities;
PortfolioVega = Vegas * OptionQuantities;
```

The example ftspex4.m performs these computations and displays the output on the screen.

Option	Price	Delta	Gamma	Vega	Quantity
1	6.3441	0.5856	0.0290	17.4293	22332.6131
2	6.6035	-0.6255	0.0353	20.0347	6864.0731
3	4.2993	0.7003	0.0548	9.5837	-15654.8657
4	22.7694	-0.4830	0.0074	83.5225	-4510.5153
Portfo	lio Valu	e: \$17000.	.00		
Portfo	lio Delt	a: 0.	.00		
Portfo	lio Gamm	a: -0.	.00		
Portfo	lio Vega	: 0.	.00		

You can verify that the portfolio value is \$17,000 and that the option portfolio is indeed delta, gamma, and vega neutral, as desired. Hedges based on these measures are effective only for small changes in the underlying variables.

Term Structure Analysis and Interest Rate Swap Pricing

This example illustrates some of the term-structure analysis functions found in the Financial Toolbox. Specifically, it illustrates how to derive implied zero (*spot*) and forward curves from the observed market prices of coupon-bearing bonds. The zero and forward curves implied from the market data are then used to price an interest rate swap agreement.

In an interest rate swap, two parties agree to a periodic exchange of cash flows. One of the cash flows is based on a fixed interest rate held constant throughout the life of the swap. The other cash flow stream is tied to some variable index rate. Pricing a swap at inception amounts to finding the fixed rate of the swap agreement. This fixed rate, appropriately scaled by the notional principle of the swap agreement, determines the periodic sequence of fixed cash flows.

In general, interest rate swaps are priced from the forward curve such that the variable cash flows implied from the series of forward rates and the periodic sequence of fixed-rate cash flows have the same present value. Thus, interest rate swap pricing and term structure analysis are intimately related.

Step 1. Specify values for the settlement date, maturity dates, coupon rates, and market prices for 10 U.S. Treasury Bonds. This data allows us to price a five-year swap with net cash flow payments exchanged every six months. For simplicity, accept default values for the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). To avoid issues of accrued interest,

assume that all Treasury Bonds pay semiannual coupons and that settlement occurs on a coupon payment date.

```
= datenum('15-Jan-1999');
Settle
BondData = { '15-Jul-1999 '
                             0.06000
                                       99.93
             '15-Jan-2000'
                            0.06125
                                       99.72
             '15-Jul-2000'
                            0.06375
                                       99.70
             '15-Jan-2001'
                            0.06500
                                       99.40
             '15-Jul-2001'
                            0.06875
                                       99.73
             '15-Jan-2002'
                            0.07000
                                       99.42
             '15-Jul-2002'
                                       99.32
                             0.07250
             '15-Jan-2003'
                             0.07375
                                       98.45
                                       97.71
             '15-Jul-2003'
                             0.07500
             '15-Jan-2004'
                            0.08000
                                       98.15};
```

BondData is an instance of a MATLAB *cell array*, indicated by the curly braces ({}).

Next assign the date stored in the cell array to Maturity, CouponRate, and Prices vectors for further processing.

```
Maturity = datenum(strvcat(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices = [BondData{:,3}]';
Period = 2; % semiannual coupons
```

Step 2. Now that the data has been specified, use the term structure function <code>zbtprice</code> to bootstrap the zero curve implied from the prices of the coupon-bearing bonds. This implied zero curve represents the series of zero-coupon Treasury rates consistent with the prices of the coupon-bearing bonds such that arbitrage opportunities will not exist.

```
ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle);
```

The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis (the periodic, six-month, interest rate is simply doubled to annualize). The first element of ZeroRates is the annualized rate over the next six months, the second element is the annualized rate over the next 12 months, and so on.

Step 3. From the implied zero curve, find the corresponding series of implied forward rates using the term structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);

The forward curve, stored in ForwardRates, is also quoted on a semiannual bond basis. The first element of ForwardRates is the annualized rate applied to the interval between settlement and six months after settlement, the second element is the annualized rate applied to the interval from six months to 12 months after settlement, and so on. This implied forward curve is also consistent with the observed market prices such that arbitrage activities will be unprofitable. Since the first forward rate is also a zero rate, the first element of ZeroRates and ForwardRates are the same.

Step 4. Now that you have derived the zero curve, convert it to a sequence of discount factors with the term structure function zero2disc.

```
DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);
```

Step 5. From the discount factors, compute the present value of the variable cash flows derived from the implied forward rates. For plain interest rate swaps, the notional principle remains constant for each payment date and cancels out of each side of the present value equation. The next line assumes unit notional principle.

```
PresentValue = sum((ForwardRates/Period) .* DiscountFactors);
```

Step 6. Compute the swap's price (the fixed rate) by equating the present value of the fixed cash flows with the present value of the cash flows derived from the implied forward rates. Again, since the notional principle cancels out of each side of the equation, it is simply assumed to be 1.

```
SwapFixedRate = Period * PresentValue / sum(DiscountFactors);
```

The example <code>ftspex5.m</code> performs these computations and displays the output on the screen.

Zero Rates	Forward Rates
0.0614	0.0614
0.0642	0.0670
0.0660	0.0695
0.0684	0.0758
0.0702	0.0774

0.0726	0.0846
0.0754	0.0925
0.0795	0.1077
0.0827	0.1089
0.0868	0.1239

Swap Price (Fixed Rate) = 0.0845

All rates are in decimal format. The swap price, 8.45%, would likely be the mid-point between a market-maker's bid/ask quotes.

Producing Graphics with the Toolbox

The Financial Toolbox and MATLAB graphics functions work together to produce presentation quality graphics, as these examples show. The examples ship with the toolbox as M-files. Try them by entering the commands directly or by executing the M-files. For help using MATLAB plotting functions, see "Creating Plots" in the MATLAB documentation.

Plotting an Efficient Frontier

This example plots the efficient frontier of a hypothetical portfolio of three assets. It illustrates how to specify the expected returns, standard deviations, and correlations of a portfolio of assets, how to convert standard deviations and correlations into a covariance matrix, and how to compute and plot the efficient frontier from the returns and covariance matrix. The example also illustrates how to randomly generate a set of portfolio weights, and how to add the random portfolios to an existing plot for comparison with the efficient frontier. The example M-file is ftgex1.m.

First, specify the expected returns, standard deviations, and correlation matrix for a hypothetical portfolio of three assets. Note the symmetry of the correlation matrix.

Returns	=	[0.1	0.15	0.12];
STDs	=	[0.2	0.25	0.18];
Correlations	=	[1	0.8	0.4
		0.8	1	0.3
		0.4	0.3	1];

Convert the standard deviations and correlation matrix into a variance-covariance matrix with the Financial Toolbox function corr2cov.

Covariances = corr2cov(STDs, Correlations);

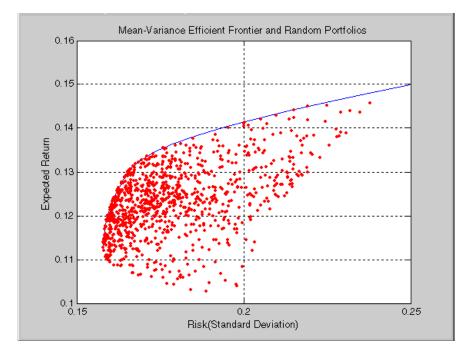
Evaluate and plot the efficient frontier at 20 points along the frontier, using the function portopt and the expected returns and corresponding covariance matrix. Although rather elaborate constraints can be placed on the assets in a portfolio, for simplicity accept the default constraints and scale the total value of the portfolio to 1 and constrain the weights to be positive (no short-selling).

```
portopt(Returns, Covariances, 20)
```

Now that the efficient frontier is displayed, randomly generate the asset weights for 1000 portfolios starting from the MATLAB initial state.

```
rand('state', 0)
Weights = rand(1000, 3);
```

The previous line of code generates three columns of uniformly distributed random weights, but does not guarantee they sum to 1. The following code segment normalizes the weights of each portfolio so that the total of the three weights represent a valid portfolio.


```
Total = sum(Weights, 2); % Add the weights
Total = Total(:,ones(3,1)); % Make size-compatible matrix
Weights = Weights./Total; % Normalize so sum = 1
```

Given the 1000 random portfolios just created, compute the expected return and risk of each portfolio associated with the weights.

```
[PortRisk, PortReturn] = portstats(Returns, Covariances, ...
Weights);
```

Finally, hold the current graph, and plot the returns and risks of each portfolio on top of the existing efficient frontier for comparison. After plotting, annotate the graph with a title and return the graph to default holding status (any subsequent plots will erase the existing data). The efficient frontier appears in blue, while the 1000 random portfolios appear as a set of red dots on or below the frontier.

```
hold on
plot (PortRisk, PortReturn, '.r')
title('Mean-Variance Efficient Frontier and Random Portfolios')
hold off
```


Plotting Sensitivities of an Option

This example creates a three-dimensional plot showing how gamma changes relative to price for a Black-Scholes option. Recall that gamma is the second derivative of the option price relative to the underlying security price. The plot shows a three-dimensional surface whose *z*-value is the gamma of an option as price (*x*-axis) and time (*y*-axis) vary. It adds yet a fourth dimension by showing option delta (the first derivative of option price to security price) as the color of the surface. This example M-file is ftgex2.m.

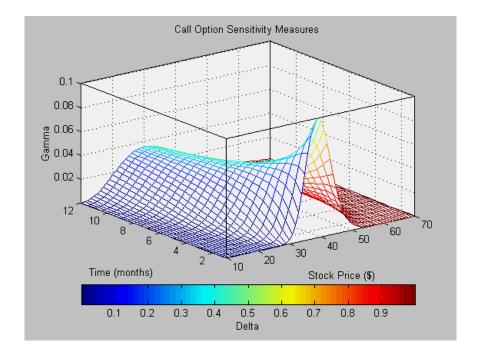
First set the price range of the options, and set the time range to one year divided into half-months and expressed as fractions of a year.

```
Range = 10:70;
Span = length(Range);
j = 1:0.5:12;
Newj = j(ones(Span,1),:)'/12;
```

For each time period create a vector of prices from 10 to 70 and create a matrix of all ones.

```
JSpan = ones(length(j),1);
NewRange = Range(JSpan,:);
Pad = ones(size(Newj));
```

Call the toolbox gamma and delta sensitivity functions. Exercise price is \$40, risk-free interest rate is 10%, and volatility is 0.35 for all prices and periods. Gamma is the *z*-axis, delta is the color.


```
ZVal = blsgamma(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
Color = blsdelta(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
```

Draw the surface as a mesh, add axis labels and a title. The axes range from 10 to 70, 1 to 12, and $-\infty$ to ∞ .

```
mesh(Range, j, ZVal, Color);
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
title('Call Option Sensitivity Measures');
axis([10 70 1 12 -inf inf]);
```

Finally add a box around the whole plot, annotate the colors with a bar, and label the colorbar.

```
set(gca, 'box', 'on');
colorbar('horiz');
a = findobj(gcf, 'type', 'axes');
set(get(a(2), 'xlabel'), 'string', 'Delta');
```


Plotting Sensitivities of a Portfolio of Options

This example plots gamma as a function of price and time for a portfolio of 10 Black-Scholes options. The plot shows a three-dimensional surface. For each point on the surface, the height (*z*-value) represents the sum of the gammas for each option in the portfolio weighted by the amount of each option. The *x*-axis represents changing price, and the *y*-axis represents time. The plot adds a fourth dimension by showing delta as surface color. This example M-file is ftgex3.m.

First set up the portfolio with arbitrary data. Current prices range from \$20 to \$90 for each option. Set corresponding exercise prices for each option.

```
Range = 20:90;
PLen = length(Range);
ExPrice = [75 70 50 55 75 50 40 75 60 35];
```

Set all risk-free interest rates to 10%, and set times to maturity in days. Set all volatilities to 0.35. Set the number of options of each instrument, and allocate space for matrices.

```
Rate = 0.1*ones(10,1);
Time = [36 36 36 27 18 18 18 9 9 9];
Sigma = 0.35*ones(10,1);
NumOpt = 1000*[4 8 3 5 5.5 2 4.8 3 4.8 2.5];
ZVal = zeros(36, PLen);
Color = zeros(36, PLen);
```

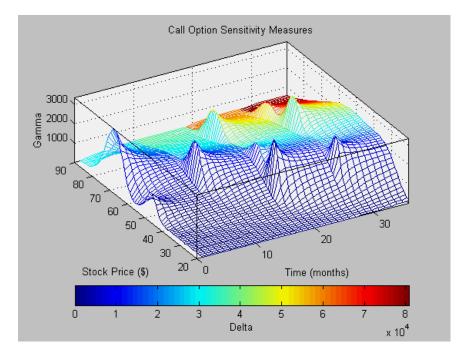
For each instrument, create a matrix (of size Time by PLen) of prices for each period.

```
for i = 1:10
    Pad = ones(Time(i),PLen);
    NewR = Range(ones(Time(i),1),:);
```

Create a vector of time periods 1 to Time; and a matrix of times, one column for each price.

T = (1:Time(i))'; NewT = T(:,ones(PLen,1));

Call the toolbox gamma and delta sensitivity functions to compute gamma and delta.


```
ZVal(36-Time(i)+1:36,:) = ZVal(36-Time(i)+1:36,:) ...
+ NumOpt(i) * blsgamma(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);
Color(36-Time(i)+1:36,:) = Color(36-Time(i)+1:36,:) ...
+ NumOpt(i) * blsdelta(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);
end
```

Draw the surface as a mesh, set the viewpoint, and reverse the *x*-axis because of the viewpoint. The axes range from 20 to 90, 0 to 36, and $-\infty$ to ∞ .

```
mesh(Range, 1:36, ZVal, Color);
view(60,60);
set(gca, 'xdir','reverse');
axis([20 90 0 36 -inf inf]);
```

Add a title and axis labels and draw a box around the plot. Annotate the colors with a bar and label the colorbar.

```
title('Call Option Sensitivity Measures');
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
set(gca, 'box', 'on');
colorbar('horiz');
a = findobj(gcf, 'type', 'axes');
set(get(a(2), 'xlabel'), 'string', 'Delta');
```


5

Function Reference

Functions - Categorical List (p. 5-2)Toolbox functions listed by category.Functions — Alphabetical List (p. 5-14)Toolbox functions listed alphabetically.

Functions - Categorical List

This chapter contains detailed descriptions of all the functions in the Financial Toolbox. The categories of functions described are:

- "Handling and Converting Dates"
- "Formatting Currency"
- "Charting Financial Data"
- "Analyzing and Computing Cash Flows"
- "Fixed-Income Securities"
- "Analyzing Portfolios"
- "Financial Statistics"
- "Pricing and Analyzing Derivatives"
- "GARCH Processes"
- "Obsolete Bond Price and Yield Functions"
- "Obsolete BDT Functions"

Handling and Converting Dates

Note The date functions datenum, datestr, datevec, eomday, now, and weekday now ship with basic MATLAB. They originally shipped only with the Financial Toolbox. Their descriptions remain in this document for your convenience.

Current Time and Date

now Current date and time.

today

Current date.

Date and Time Components

datefind	Indices of date numbers in matrix.
datevec	Date components.
day	Day of month.
eomdate	Last date of month.
eomday	Last day of month.
hour	Hour of date or time.
lweekdate	Date of last occurrence of weekday in month.
minute	Minute of date or time.
month	Month of date.
months	Number of whole months between dates.
nweekdate	Date of specific occurrence of weekday in month.
second	Second of date or time.
thirdwednesday	Third Wednesday of the month.
weekday	Day of the week.
year	Year of date.
yeardays	Number of days in year.

Date Conversion

date2time	Time and frequency from dates
datedisp	Display date entries.
datenum	Create date number.
datestr	Create date string.
dec2thirtytwo	Decimal quotation to thirty-second.
m2xdate	MATLAB serial date number to Excel serial date number.
thirtytwo2dec	Thirty-second quotation to decimal.

time2date	Dates from time and frequency
x2mdate	Excel serial date number to MATLAB serial date number.

Financial Dates

busdate		Next or previous business day.
datemnth		Date of day in future or past month.
datewrkdy		Date of future or past workday.
days360	SIA^1	Days between dates based on 360-day year.
days360e		Days between dates based on 360-day year (European).
days360isda	$ISDA^2$	Days between dates based on 360-day year.
days360psa	PSA^3	Days between dates based on 360-day year.
days365		Days between dates based on 365-day year.
daysact		Actual number of days between dates.
daysadd		Date away from a starting date for any day-count basis
daysdif		Days between dates for any day-count basis.
fbusdate		First business date of month.
holidays		Holidays and non-trading days.
isbusday		True for dates that are business days.
lbusdate		Last business date of month.
wrkdydif		Number of working days between dates.
yearfrac		Fraction of year between dates.

¹ Securities Industry Association compliant.

 2 International Swap Dealer Association.

³ Public Securities Association.

Coupon Bond Dates

accrfrac	SIA	Fraction of coupon period before settlement.
cfamounts	SIA	Cash flow and time mapping for bond portfolio.
cfdates	SIA	Cash flow dates for a fixed-income security with periodic payments.
cfport		Portfolio form of cash flow amounts.
cftimes	SIA	Time factors corresponding to bond cash flow dates.
cpncount	SIA	Coupon payments remaining until maturity.
cpndaten	SIA	Next coupon date after settlement date.
cpndatenq	SIA	Next quasi coupon date for fixed income security.
cpndatep	SIA	Previous coupon date before settlement date.
cpndatepq	SIA	Previous quasi coupon date for fixed income security.
cpndaysn	SIA	Number of days between settlement date and next coupon date.
cpndaysp	SIA	Number of days between previous coupon date and settlement date.
cpnpersz	SIA	Number of days in coupon period containing settlement date.

Formatting Currency

cur2frac	Decimal currency value to fractional value.
cur2str	Bank formatted text.
frac2cur	Fractional currency value to decimal value.

Charting Financial Data

The Financial Toolbox provides a set of functions that create several of the most commonly-used types of financial charts. The Financial Time Series Toolbox provides additional charting capabilities. Using time series data as input, the Financial Time Series Toolbox can compute the value of various

financial indicators and plot the results. Complete information may be found in the Financial Time Series documentation.

bolling	Bollinger band chart.
candle	Candlestick chart.
dateaxis	Convert serial-date axis labels to calendar-date axis labels.
highlow	High, low, open, close chart.
movavg	Leading and lagging moving averages chart.
pointfig	Point and figure chart.

Analyzing and Computing Cash Flows

Annuities

annurate	Periodic interest rate of annuity.
annuterm	Number of periods to obtain value.

Amortization and Depreciation

amortize	Amortization.
depfixdb	Fixed declining-balance depreciation.
depgendb	General declining-balance depreciation.
deprdv	Remaining depreciable value.
depsoyd	Sum of years' digits depreciation.
depstln	Straight-line depreciation.

Present Value

pvfix	Present value with fixed periodic payments.
pvvar	Present value of varying cash flow.

Future Value

fvdisc	Future value of discounted security.
fvfix	Future value with fixed periodic payments.
fvvar	Future value of varying cash flow.

Payment Calculations

payadv	Periodic payment given number of advance payments.
payodd	Payment of loan or annuity with odd first period.
payper	Periodic payment of loan or annuity.
payuni	Uniform payment equal to varying cash flow.

Rates of Return

effrr	Effective rate of return.
irr	Internal rate of return.
mirr	Modified internal rate of return.
nomrr	Nominal rate of return.
taxedrr	After-tax rate of return.
xirr	Internal rate of return for nonperiodic cash flow.

Cash Flow Sensitivities

cfconv	Cash flow convexity.
cfdur	Cash flow duration and modified duration.

Fixed-Income Securities

Accrued Interest

acrubond	Accrued interest of security with periodic interest payments.
acrudisc	Accrued interest of discount security paying at maturity.

Prices

bndprice	SIA	Price a fixed income security from yield to maturity.
prdisc		Price of discounted security.
prmat		Price with interest at maturity.
prtbill		Price of Treasury bill.

Term Structure of Interest Rates

disc2zero	Zero curve given a discount curve.
fwd2zero	Zero curve given a forward curve.
prbyzero	Price bonds in a portfolio by a set of zero curves.
pyld2zero	Zero curve given a par yield curve.
tbl2bond	Treasury bond parameters given Treasury bill parameters.
tr2bonds	Term-structure parameters given Treasury bond parameters.
zbtprice	Zero curve bootstrapping from coupon bond data given price.
zbtyield	Zero curve bootstrapping from coupon bond data given yield.
zero2disc	Discount curve given a zero curve.
zero2fwd	Forward curve given a zero curve.
zero2pyld	Par yield curve given a zero curve.

Yields

beytbill	Bond equivalent yield for Treasury bill.
bndyield SIA	Yield to maturity for fixed income security.
discrate	Bank discount rate of a money market security.
ylddisc	Yield of discounted security.
yldmat	Yield of security with interest at maturity.
yldtbill	Yield of Treasury bill.

Spreads

bndspread SIA Static spread over spot curve

Interest Rate Sensitivities

bndconvp	SIA	Bond convexity given price.
bndconvy	SIA	Bond convexity given yield.
bnddurp	SIA	Bond duration given price.
bnddury	SIA	Bond duration given yield.

Analyzing Portfolios

Portfolio Analysis

abs2active	Convert constraints from absolute format to active format
active2abs	Convert constraints from active format to absolute format
corr2cov	Convert standard deviation and correlation to covariance.
cov2corr	Convert covariance to standard deviation and correlation coefficient.
ewstats	Expected return and covariance from return time series.
frontcon	Mean-variance efficient frontier.
pcalims	Linear inequalities for individual asset allocation.

pcgcomp	Linear inequalities for asset group comparison constraints.
pcglims	Linear inequalities for asset group minimum and maximum allocation.
pcpval	Linear inequalities for fixing total portfolio value.
portalloc	Optimal capital allocation to efficient frontier portfolios.
portcons	Portfolio constraints.
portopt	Portfolios on constrained efficient frontier.
portrand	Randomized portfolio risks, returns, and weights.
portstats	Portfolio expected return and risk.
portsim	Monte Carlo simulation of correlated asset returns.
portvrisk	Portfolio value at risk
ret2tick	Convert a return series to a price series
tick2ret	Convert a price series to a return series

Financial Statistics

Expectation Conditional Maximization

ecmnfish	Fisher information matrix
ecmnhess	Hessian of negative log-likelihood function
ecmninit	Initial mean and covariance
ecmnmle	Mean and covariance of incomplete multivariate normal data
ecmnobj	Multivariate normal negative log-likelihood function
ecmnstd	Standard errors for mean and covariance of incomplete data

Pricing and Analyzing Derivatives

Option Valuation and Sensitivity

binprice	Binomial put and call pricing.
blkimpv	Implied volatility for futures options from Black's model.
blkprice	Black's model for pricing futures options.
blsdelta	Black-Scholes sensitivity to underlying price change.
blsgamma	Black-Scholes sensitivity to underlying delta change.
blsimpv	Black-Scholes implied volatility.
blslambda	Black-Scholes elasticity.
blsprice	Black-Scholes put and call pricing.
blsrho	Black-Scholes sensitivity to interest rate change.
blstheta	Black-Scholes sensitivity to time-until-maturity change.
blsvega	Black-Scholes sensitivity to underlying price volatility.
opprofit	Option profit.

GARCH Processes

The Financial Toolbox provides these representative functions to help you familiarize yourself with Generalized Autoregressive Conditional Heteroskedasticity (GARCH) in the MATLAB context. The GARCH Toolbox provides a more comprehensive and integrated computing environment that includes maximum likelihood parameter estimation, volatility forecasting, Monte Carlo simulation, diagnostic and hypothesis testing, graphical analysis, and data manipulation. For information see the *GARCH Toolbox User's Guide* or the financial products Web page at http://www.mathwonke.com/papeduate/finance/

http://www.mathworks.com/products/finprod/.

Univariate GARCH Processes

ugarch	GARCH parameter estimation.
ugarchllf	Log-likelihood objective function.
ugarchpred	Forecast conditional variance.
ugarchsim	Simulate GARCH process.

Obsolete Bond Price and Yield Functions

The functions listed in this table are obsolete, and their descriptions have been removed from the documentation. They have been replaced with the SIA-compliant functions bndprice and bndyield. For compatibility purposes, the obsolete functions remain in the product. Type help function_name at the MATLAB command line for a description.

Obsolete Functions

prbond	Price of security with regular periodic interest payments.
proddf	Price with odd first period.
proddfl	Price with odd first and last periods and settlement in first period.
proddl	Price with odd last period.
yldbond	Yield to maturity of bond.
yldoddf	Yield of security with odd first period.
yldoddfl	Yield of security with odd first and last periods and settlement in first period.
yldoddl	Yield of security with odd last period.

Obsolete BDT Functions

The functions bdtbond and bdttrans are obsolete, and their descriptions have been removed from the documentation. These functions have been replaced by BDT functions in the Financial Derivatives Toolbox. For compatibility purposes, the obsolete functions remain in the product. Type help function_name at the MATLAB command line for a description.

Functions – Alphabetical List

This section contains function reference pages listed alphabetically.

Purpose	Convert constraints from absolute format to active format	
Syntax	ActiveConSet = abs2active(AbsConSet, Index)	
Arguments	AbsConSet	Portfolio linear inequality constraint matrix expressed in absolute weight format. AbsConSet is formatted as [A b] such that A*w <= b, where A is a number of constraints (NCONSTRAINTS) by number of assets (NASSETS) weight coefficient matrix, and b and w are column vectors of length NASSETS. The value w represents a vector of absolute asset weights whose elements sum to the total portfolio value.
		See the output ConSet from portcons for additional details about constraint matrices.
	Index	NASSETS-by-1 vector of index portfolio weights. The sum of the index weights must equal the total portfolio value (e.g., a standard portfolio optimization imposes a sum-to-one budget constraint).
Description	ActiveConSet = abs2active(AbsConSet, Index) transforms a constraint matrix to an equivalent matrix expressed in active weight format (relative to the index). The transformation equation is $Aw_{absolute} = A(w_{active} + w_{index}) \leq b_{absolute}$ Therefore	

 $Aw_{active} \le b_{absolute} - Aw_{index} = b_{active}$

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality constraints expressed in absolute weight format. The index portfolio vector contains NASSETS assets.

ActiveConSet is the transformed portfolio linear inequality constraint matrix expressed in active weight format, also of the form [A b] such that $A*w \le b$. The value w represents a vector of active asset weights (relative to the index portfolio) whose elements sum to zero.

See Also active2abs, pcalims, pcgcomp, pcglims, pcpval, portcons

Purpose	Convert constraints from active format to absolute format		
Syntax	AbsConSet = activ	ve2abs(ActiveConSet, Index)	
Arguments	ActiveConSet	Portfolio linear inequality constraint matrix expressed in active weight format. ActiveConSet is formatted as [A b] such that A*w <= b, where A is a number of constraints (NCONSTRAINTS) by number of assets (NASSETS) weight coefficient matrix, and b and w are column vectors of length NASSETS. The value w represents a vector of active asset weights (relative to the index portfolio) whose elements sum to 0.	
		See the output ConSet from portcons for additional details about constraint matrices.	
	Index	NASSETS-by-1 vector of index portfolio weights. The sum of the index weights must equal the total portfolio value (e.g., a standard portfolio optimization imposes a sum-to-one budget constraint).	
Description	AbsConSet = active2abs(ActiveConSet, Index) transforms a constraint matrix to an equivalent matrix expressed in absolute weight format. The transformation equation is		

 $Aw_{active} = A(w_{absolute} - w_{index}) \le b_{active}$

Therefore

 $Aw_{absolute} \le b_{active} + Aw_{index} = b_{absolute}$

The initial constraint matrix consists of NCONSTRAINTS portfolio linear inequality constraints expressed in active weight format (relative to the index portfolio). The index portfolio vector contains NASSETS assets.

AbsConSet is the transformed portfolio linear inequality constraint matrix expressed in absolute weight format, also of the form [A b] such that $A^*w \leq b$. The value w represents a vector of active asset weights (relative to the index portfolio) whose elements sum to the total portfolio value.

See Also abs2active, pcalims, pcgcomp, pcglims, pcpval, portcons

Purpose	Fraction of coupon period before settlement (SIA compliant)			
Syntax		Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)		
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.		
	Maturity	Maturity date. A vector of serial date numbers or date strings.		
	Period (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, an 12.			
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \operatorname{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \operatorname{actual/360}$, $3 = \operatorname{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \operatorname{actual/365}$ (Japanese).		
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.		
	IssueDate	(Optional) Date when a bond was issued.		
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.		

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.	
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.	
	Vector arguments	must have consistent dimensions, or they must be scalars.	
Description	Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns the fraction of the coupon period before settlement. This function is used for computing accrued interest.		
Examples	Given data for thre	ee bonds	
	<pre>Settle = '14-Mar-1997'; Maturity = ['30-Nov-2000'</pre>		
	Execute the function.		
	Fraction = acc Fraction = 0.5714 0.4033 0.2320	crfrac(Settle, Maturity, Period, Basis, EndMonthRule)	

See Also cfamounts, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

acrubond

Purpose	Accrued interest of security with periodic interest payments		
Syntax	AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face, CouponRate, Period, Basis)		
Arguments	IssueDate	Enter as serial date number or date string.	
	Settle	Enter as serial date number or date string.	
	FirstCouponDate	Enter as serial date number or date string.	
	Face	Redemption (par, face) value.	
	CouponRate	Enter as decimal fraction.	
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).	
Description	AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face, CouponRate, Period, Basis) returns the accrued interest for a security with periodic interest payments. This function computes the accrued interest for securities with standard, short, and long first coupon periods.		
	Note cfamounts or accrfrac is recommended when calculating accrued interest beyond the first period.		
Examples	AccruInterest = acrubond('31-jan-1983', '1-mar-1993', '31-jul-1983', 100, 0.1, 2, 0)		
	AccruInterest = 0.8011		

See Also accrfrac, acrudisc, bndprice, bndyield, cfamounts, datenum

acrudisc

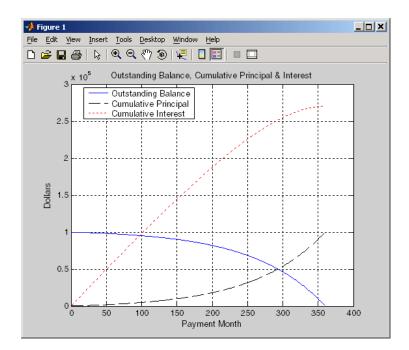
Purpose	Accrued interest of discount security paying at maturity		
Syntax	AccruInt Basis	erest = acrudisc(Settle, Maturity, Face, Discount, Period,)	
Arguments	Settle	Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.	
	Maturity	/ Enter as serial date number or date string.	
	Face	Redemption (par, face) value.	
	Discount	Discount rate of the security. Enter as decimal fraction.	
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 = actual/365 (Japanese).	
Description	AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period, Basis) returns the accrued interest of a discount security paid at maturity.		
Examples	AccruInterest = acrudisc('05/01/1992', '07/15/1992', 100, 0.1, 2, 0)		
	Accru	Interest = 2.0604 (or \$2.06)	
See Also	acrubond, prdisc, prmat, ylddisc, yldmat		
References	Mayle, Si Formula	tandard Securities Calculation Methods, Volumes I-II, 3rd edition. D.	

amortize

Purpose	Amortization schedule		
Syntax		Interest, Balance, Payment] = amortize(Rate, NumPeriods, Lue, FutureValue, Due)	
Arguments	Rate NumPeriods	Interest rate per period, as a decimal fraction.	
		Number of payment periods. Present value of the loan.	
	FutureValue	(Optional) Future value of the loan. Default = 0.	
	Due	(Optional) When payments are due: 0 = end of period (default), or 1 = beginning of period.	
Description	[Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods, PresentValue, FutureValue, Due) returns the principal and interest payments of a loan, the remaining balance of the original loan amount, and the periodic payment.		
	Principal Principal paid in each period. A 1-by-NumPeriods vector.		
	Interest In	terest paid in each period. A 1-by-NumPeriods vector.	
		emaining balance of the loan in each payment period. A by-NumPeriods vector.	
	Payment Pa	yment per period. A scalar.	
Examples	Compute an amortization schedule for a conventional 30-year, fixed-rate mortgage with fixed monthly payments. Assume a fixed rate of 12% APR and an initial loan amount of \$100,000.		
	Rate = 0.12/12; % 12 percent APR = 1 percent per mo NumPeriods = 30*12; % 30 years = 360 months PresentValue = 100000;		
		l, Interest, Balance, Payment] = amortize(Rate, s, PresentValue);	

The output argument Payment contains the fixed monthly payment.

format bank


Payment

Payment =

1028.61

Finally, summarize the amortization schedule graphically by plotting the current outstanding loan balance, the cumulative principal, and the interest payments over the life of the mortgage. In particular, note that total interest paid over the life of the mortgage exceeds \$270,000, far in excess of the original loan amount!

```
plot(Balance, 'b'), hold('on')
plot(cumsum(Principal),'--k')
plot(cumsum(Interest),':r')
xlabel('Payment Month')
ylabel('Dollars')
grid('on')
title('Outstanding Balance, Cumulative Principal & Interest')
legend('Outstanding Balance', 'Cumulative Principal', ...
'Cumulative Interest', 'TL')
```


The solid blue line represents the declining principal over the 30-year period. The dotted red line indicates the increasing cumulative interest payments. Finally, the dashed black line represents the cumulative principal payments, reaching \$100,000 after 30 years.

See Also

annurate, annuterm, payadv, payodd, payper

annurate

Purpose	Periodic interest rate of annuity		
Syntax	Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue, Due)		
Arguments	NumPeriodsNumber of payment periods.PaymentPayment per period.PresentValuePresent value of the loan or annuity.FutureValue(Optional) Future value of the loan or annuity. Default = 0.Due(Optional) When payments are due: 0 = end of period (default), or 1 = beginning of period.		
Description	Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue, Due) returns the periodic interest rate paid on a loan or annuity.		
Examples	Find the periodic interest rate of a four-year, \$5000 loan with a \$130 monthly payment made at the end of each month. Rate = annurate(4*12, 130, 5000, 0, 0) Rate = 0.0094 (Rate multiplied by 12 gives an annual interest rate of 11.32% on the loan.)		
See Also	amortize, annuterm, bndyield, irr		

Purpose	Number of periods to obtain value		
Syntax	NumPeriods = a	annuterm(Rate, Payment, PresentValue, FutureValue, Due)	
Arguments	Rate Payment PresentValue	Payment Payment per period.	
	FutureValue	(Optional) Future value. Default = 0.	
	Due	(Optional) When payments are due: 0 = end of period (default), or 1 = beginning of period.	
Description	NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue, Due) calculates the number of periods needed to obtain a future value. To calculate the number of periods needed to pay off a loan, enter the payment or the present value as a negative value.		
Examples	A savings account has a starting balance of \$1500. \$200 is added at the end of each month and the account pays 9% interest, compounded monthly. How many years will it take to save \$5,000?		
	NumPeriods	NumPeriods = annuterm(0.09/12, 200, 1500, 5000, 0)	
	NumPeriods = 15.68 months or 1.31 years.		
See Also	annurate, amor	annurate, amortize, fvfix, pvfix	

beytbill

Purpose	Bond equivalent yield for Treasury bill		
Syntax	Yield = beytbill(Settle, Maturity, Discount)		
Arguments	Settle Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.		
	Maturity Enter as serial date number or date string.		
	Discount Discount rate of the Treasury bill. Enter as decimal fraction.		
Description	Yield = beytbill(Settle, Maturity, Discount) returns the bond equivalent yield for a Treasury bill.		
Examples	The settlement date of a Treasury bill is February 11, 2000, the maturity date is August 7, 2000, and the discount rate is 5.77%. The bond equivalent yield is Yield = beytbill('2/11/2000', '8/7/2000', 0.0577)		
	Yield = 0.0602		
See Also	datenum, prtbill, yldtbill		

Purpose	Binomial put and call pricing		
Syntax		OptionValue] = binprice(Price, Strike, Rate, Time, Volatility, Flag, DividendRate, Dividend, ExDiv)	
Arguments	Price	Underlying asset price. A scalar.	
	Strike	Option exercise price. A scalar.	
	Rate	Risk-free interest rate. A scalar. Enter as a decimal fraction.	
	Time	Option's time until maturity in years. A scalar.	
	Increment Time increment. A scalar. Increment is adjusted so that the length of each interval is consistent with the maturity time the option. (Increment is adjusted so that Time divided by Increment equals an integer number of increments.)		
	Volatility	Asset's volatility. A scalar.	
	Flag	Specifies whether the option is a call (Flag = 1) or a put (Flag = 0). A scalar.	
	DividendRate	(Optional) The dividend rate, as a decimal fraction. A scalar. Default = 0. If you enter a value for DividendRate, set Dividend and $ExDiv = 0$ or do not enter them. If you enter values for Dividend and $ExDiv$, set DividendRate = 0.	
	Dividend (Optional) The dividend payment at an ex-dividend ExDiv. A row vector. For each dividend payment a corresponding ex-dividend date. Default = 0. values for Dividend and ExDiv, set DividendR		
	ExDiv	(Optional) Ex-dividend date, specified in number of periods. A row vector. Default = 0.	
Description	[AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time, Increment, Volatility, Flag, DividendRate, Dividend, ExDiv) prices an option using the Cox-Ross-Rubinstein binomial pricing model.		

binprice

Examples For a put option, the asset price is \$52, option exercise price is \$50, risk-free interest rate is 10%, option matures in 5 months, volatility is 40%, and there is one dividend payment of \$2.06 in 3-1/2 months.

[Price, Option] = binprice(52, 50, 0.1, 5/12, 1/12, 0.4, 0, 0,... 2.06, 3.5)

returns the asset price and option value at each node of the binary tree.

52.0000	58.1367	65.0226	72.7494	79.3515	89.0642
0	46.5642	52.0336	58.1706	62.9882	70.6980
0	0	41.7231	46.5981	49.9992	56.1192
0	0	0	37.4120	39.6887	44.5467
0	0	0	0	31.5044	35.3606
0	0	0	0	0	28.0688
Option =					
4.4404	2.1627	0.6361	0	0	0
0	6.8611	3.7715	1.3018	0	0
0	0	10.1591	6.3785	2.6645	0
0	0	0	14.2245	10.3113	5.4533
0	0	0	0	18.4956	14.6394
0	0	0	0	0	21.9312

See Also blkprice, blsprice

Price =

References Cox, J.; S. Ross; and M. Rubenstein, "Option Pricing: A Simplified Approach", *Journal of Financial Economics* 7, Sept. 1979, pp. 229 - 263

Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter 14.

Purpose	Implied volatility for futures options from Black's model		
Syntax	Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, Tolerance, Class)		
Arguments	Price	Current price of the underlying asset (a futures contract).	
	Strike	Exercise price of the futures option.	
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.	
	Time	Time to expiration of the option, expressed in years.	
	Value	Price of a European futures option from which the implied volatility of the underlying asset is derived.	
	Limit (Optional) Positive scalar representing the upper bound of the implied volatility search interval. If Limit is empty of unspecified, the default = 10, or 1000% per annum.		
	Tolerance	(Optional) Implied volatility termination tolerance. A positive scalar. Default = 1e-6.	
	Class	(Optional) Option class (call or put) indicating the option type from which the implied volatility is derived. May be either a logical indicator or a cell array of characters. To specify call options, set Class = true or Class = {'call'}; to specify put options, set Class = false or Class = {'put'}. If Class is empty or unspecified, the default is a call option.	
Description	<pre>Volatility = blkimpv(Price, Strike, Rate, Time, CallPrice, MaxIterations, Tolerance) using Black's model computes the implied volatility of a futures price from the market value of European futures options. Volatility is the implied volatility of the underlying asset derived from European futures option prices, expressed as a decimal number. If no solution is found, blkimpv returns NaN.</pre>		
	Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to compute the implied volatility of all the options. I		

blkimpv

	more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical. Rate and Time must be expressed in consistent units of time.
Examples	Consider a European call futures option that expires in four months, trading at \$1.1166, with an exercise price of \$20. Assume that the current underlying futures price is also \$20 and that the risk-free rate is 9% per annum. Furthermore, assume that you are interested in implied volatilities no greater than 0.5 (50% per annum). Under these conditions, the following commands all return an implied volatility of 0.25, or 25% per annum.
	Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5) Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], {'Call'}) Volatility = blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5, [], true)
See Also	blkprice, blsimpv, blsprice
References	Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th edition, 2003, pp. 287-288.Black, Fischer, "The Pricing of Commodity Contracts," Journal of Financial
	Economics, March 3, 1976, pp. 167-79.

Purpose	Black's model for pricing futures options		
Syntax	[Call, Put] =	= blkprice(Price, Strike, Rate, Time, Volatility)	
Arguments	Price	Current price of the underlying asset (a futures contract).	
	Strike	Strike or exercise price of the futures option.	
	Rate	Annualized, continuously compounded, risk-free rate of return over the life of the option, expressed as a positive decimal number.	
	Time	Time until expiration of the option, expressed in years. Must be greater than 0.	
	Volatility	Annualized futures price volatility, expressed as a positive decimal number.	
Description	[Call, Put] = blkprice(ForwardPrice, Strike, Rate, Time, Volatility) uses Black's model to compute European put and call futures option prices.		
	Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to compute the implied volatility from all options. If more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical.		
	Rate, Time, and	d Volatility must be expressed in consistent units of time.	
Examples	four months. A	pean futures options with exercise prices of \$20 that expire in ssume that the current underlying futures price is also \$20 with 25% per annum. The risk-free rate is 9% per annum. Using this	
	[Call, Pu	t] = blkprice(20, 20, 0.09, 4/12, 0.25)	
	returns equal o	call and put prices of \$1.1166.	
See Also	binprice, blsp	price	
References	Hull, John C., edition, 2003, j	<i>Options, Futures, and Other Derivatives</i> , Prentice Hall, 5th pp. 287-288.	

Black, Fischer, "The Pricing of Commodity Contracts," *Journal of Financial Economics*, March 3, 1976, pp. 167-179.

Purpose	Black-Scholes sensitivity to underlying price change		
Syntax	[CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time, Volatility, Yield)		
Arguments	Price	Current price of the underlying asset.	
	Strike	Exercise price of the option.	
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.	
	Time	Time to expiration of the option, expressed in years.	
	Volatility	Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.	
	Yield	(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.	
Description	Volatility,	PutDelta] = blsdelta(Price, Strike, Rate, Time, Yield) returns delta, the sensitivity in option value to change ring asset price. Delta is also known as the hedge ratio.	
Examples	[CallDelta	a, PutDelta] = blsdelta(50, 50, 0.1, 0.25, 0.3, 0)	
	CallDelta 0.5955		
	PutDelta = -0.4045		

blsdelta

See Also	blsgamma, blslambda, blsprice, blsrho, blstheta, blsvega
References	Hull, John C., <i>Options, Futures, and Other Derivatives</i> , Prentice Hall, 5th edition, 2003.

blsgamma

Purpose	Black-Scholes sensitivity to underlying delta change		
Syntax	Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield)		
Arguments	Price	Current price of the underlying asset.	
	Strike	Exercise price of the option.	
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.	
	Time	Time to expiration of the option, expressed in years.	
	Volatility	Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.	
	Yield	(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.	
Description	Gamma = blsgamma(Price, Strike, Rate, Time, Volatility, Yield) returns gamma, the sensitivity of delta to change in the underlying asset price.		
Examples	Gamma = blsgamma(50, 50, 0.12, 0.25, 0.3, 0)		
	Gamma = 0.0512		
See Also	blsdelta, blslambda, blsprice, blsrho, blstheta, blsvega		
References	Hull, John C., <i>Options, Futures, and Other Derivatives</i> , Prentice Hall, 5th edition, 2003.		

blsimpv

Purpose	Black-Scholes implied volatility		
Syntax	Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, Yield, Tolerance, Class)		
Arguments	Price	Current price of the underlying asset.	
	Strike	Exercise price of the option.	
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.	
	Time	Time to expiration of the option, expressed in years.	
	Value	Price of a European option from which the implied volatility of the underlying asset is derived.	
	Limit	(Optional) Positive scalar representing the upper bound of the implied volatility search interval. If Limit is empty or unspecified, the default = 10, or 1000% per annum.	
	Yield	(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.	
	Tolerance	(Optional) Implied volatility termination tolerance. A positive scalar. Default = 1e-6.	
	Class	(Optional) Option class (call or put) indicating the option type from which the implied volatility is derived. May be either a logical indicator or a cell array of characters. To specify call options, set Class = true or Class = {'call'}; to specify put options, set Class = false or Class = {'put'}. If Class is empty or unspecified, the default is a call option.	

Description	Volatility = blsimpv(Price, Strike, Rate, Time, Value, Limit, Yield, Tolerance, Class) using a Black-Scholes model computes the implied volatility of an underlying asset from the market value of European call and put options.		
	Volatility is the implied volatility of the underlying asset derived from European option prices, expressed as a decimal number. If no solution is found, blsimpv returns NaN.		
	Any input argument may be a scalar, vector, or matrix. When a value is a scalar, that value is used to price all the options. If more than one input is a vector or matrix, the dimensions of all non-scalar inputs must be identical.		
	Rate, Time, and Yield must be expressed in consistent units of time.		
Examples	Consider a European call option trading at \$10 with an exercise price of \$ and three months until expiration. Assume that the underlying stock pays dividend and trades at \$100. The risk-free rate is 7.5% per annum. Furthermore, assume that you are interested in implied volatilities no grea than 0.5 (50% per annum).		
	Under these conditions, the following statements all compute an implied volatility of 0.3130, or 31.30% per annum.		
	Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5) Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], {'Call'}) Volatility = blsimpv(100, 95, 0.075, 0.25, 10, 0.5, 0, [], true)		
See Also	blsdelta, blsgamma, blslambda, blsprice, blsrho, blstheta		
References	Hull, John C., <i>Options, Futures, and Other Derivatives</i> , Prentice Hall, 5th edition, 2003.		
	Luenberger, David G., Investment Science, Oxford University Press, 1998.		

blslambda

Purpose	Black-Scholes elasticity	
Syntax	[CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility, Yield)	
Arguments	Price	Current price of the underlying asset.
	Strike	Exercise price of the option.
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.
	Time	Time to expiration of the option, expressed in years.
	Volatility	Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
	Yield	(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Description	yield) return or leverage fac Elasticity (the	El] = blslambda(Price, Strike, Rate, Time, Volatility, hs the elasticity of an option. CallEl is the call option elasticity etor, and PutEl is the put option elasticity or leverage factor. eleverage of an option position) measures the percent change in e per one percent change in the underlying asset price.
Examples	[CallEl, F	PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)
	CallEl = 8.1274	1
	PutEl = -8.6466	6

See Also blsdelta, blsgamma, blsprice, blsrho, blstheta, blsvega

References Daigler, *Advanced Options Trading*, Chapter 4.

blsprice

Purpose	Black-Scholes put and call option pricing	
Syntax	[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield)	
Arguments	Price	Current price of the underlying asset.
	Strike	Exercise price of the option.
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.
	Time	Time to expiration of the option, expressed in years.
	Volatility	Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
	Yield	(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Description		= blsprice(Price, Strike, Rate, Time, Volatility, ates European put and call option prices using a Black-Scholes
	Any input argument may be a scalar, vector, or matrix. When a value i scalar, that value is used to price all the options. If more than one inpu vector or matrix, the dimensions of all non-scalar inputs must be identi	
	Rate, Time, Vo time.	latility, and Yield must be expressed in consistent units of
Examples	Consider European stock options that expire in three months with an exercise price of \$95. Assume that the underlying stock pays no dividend, trades at \$100, and has a volatility of 50% per annum. The risk-free rate is 10% per annum. Using this data [Call, Put] = blsprice(100, 95, 0.1, 0.25, 0.5)	

returns call and put prices of \$13.70 and \$6.35, respectively.

See Also blkprice, blsdelta, blsgamma, blsimpv, blslambda, blsrho, blstheta, blsvega

References Hull, John C., *Options, Futures, and Other Derivatives*, Prentice Hall, 5th edition, 2003.

Luenberger, David G., Investment Science, Oxford University Press, 1998.

blsrho

Purpose	Black-Scholes sensitivity to interest rate change	
Syntax	[CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility, Yield)	
Arguments	Price	Current price of the underlying asset.
	Strike	Exercise price of the option.
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.
	Time	Time to expiration of the option, expressed in years.
	Volatility	Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
	Yield	(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Description	Yield) return	tRho]= blsrho(Price, Strike, Rate, Time, Volatility, as the call option rho CallRho, and the put option rho PutRho. Rho hange in value of derivative securities with respect to interest
Examples	[CallRho,	PutRho] = blsrho(50, 50, 0.12, 0.25, 0.3, 0)
	CallRho = 6.6686	3
	PutRho = -5.4619)

See Also blsdelta, blsgamma, blslambda, blsprice, blstheta, blsvega

References Hull, John C., *Options, Futures, and Other Derivatives*, Prentice Hall, 5th edition, 2003.

blstheta

Purpose	Black-Scholes sensitivity to time-until-maturity change		
Syntax	[CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time, Volatility, Yield)		
Arguments	Price	Current price of the underlying asset.	
	Strike	Exercise price of the option.	
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.	
	Time	Time to expiration of the option, expressed in years.	
	Volatility	Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.	
	Yield	(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.	
Description	Volatility,	PutTheta] = blstheta(Price, Strike, Rate, Time, Yield) returns the call option theta CallTheta, and the put utTheta. Theta is the sensitivity in option value with respect to	
Examples	[CallTheta	a, PutTheta] = blstheta(50, 50, 0.12, 0.25, 0.3, 0)	
	CallTheta -8.9630		
	PutTheta = -3.1404		

See Also blsdelta, blsgamma, blslambda, blsprice, blsrho, blsvega

References Hull, John C., *Options, Futures, and Other Derivatives*, Prentice Hall, 5th edition, 2003.

blsvega

Purpose	Black-Scholes sensitivity to underlying price volatility	
Syntax	Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield)	
Arguments	Price	Current price of the underlying asset.
	Strike	Exercise price of the option.
	Rate	Annualized, continuously compounded risk-free rate of return over the life of the option, expressed as a positive decimal number.
	Time	Time to expiration of the option, expressed in years.
	Volatility	Annualized asset price volatility (annualized standard deviation of the continuously compounded asset return), expressed as a positive decimal number.
	Yield	(Optional) Annualized, continuously compounded yield of the underlying asset over the life of the option, expressed as a decimal number. (Default = 0.) For example, for options written on stock indices, Yield could represent the dividend yield. For currency options, Yield could be the foreign risk-free interest rate.
Description	Vega = blsvega(Price, Strike, Rate, Time, Volatility, Yield) returns vega, the rate of change of the option value with respect to the volatility of the underlying asset.	
Examples	Vega = blsvega(50, 50, 0.12, 0.25, 0.3, 0)	
	Vega = 9.6035	
See Also	blsdelta, blsgamma, blslambda, blsprice, blsrho, blstheta	
References	Hull, John C., <i>Options, Futures, and Other Derivatives</i> , Prentice Hall, 5th edition, 2003.	

Purpose	Bond convexity given price (SIA compliant)	
Syntax	[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)	
Arguments	Price	Clean price (excludes accrued interest).
	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
	Face	(Optional) Face or par value. Default = 100.
	All specified arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill unspecified entries in input vectors with NaN. Dates can be serial date numbers or date strings.	
Description	[YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) computes the convexity of NUMBONDS fixed income securities given a clean price for each bond. This function determines the convexity for a bond whether or not the first or last coupon periods in the coupon structure are short or long (i.e., whether or not the coupon structure is synchronized to maturity). This function also determines the convexity of a zero coupon bond. YearConvexity is the yearly (annualized) convexity; PerConvexity is the periodic convexity reported on a semiannual bond basis (in accordance with SIA convention). Both outputs are NUMBONDS-by-1 vectors.	

bndconvp

Examples Find the convexity of three bonds given their prices. Price = [106; 100; 98]; CouponRate = 0.055; Settle = '02-Aug-1999'; Maturity = '15-Jun-2004'; Period = 2; Basis = 0; [YearConvexity, PerConvexity] = bndconvp(Price,... CouponRate, Settle, Maturity, Period, Basis) YearConvexity = 21.4447 21.0363 20.8951 PerConvexity = 85.7788 84.1454 83.5803 See Also bndconvy, bnddurp, bnddury, cfconv, cfdur

bndconvy

Purpose	Bond convexity given yield (SIA compliant)	
Syntax	[YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)	
Arguments	Yield	Yield to maturity on a semiannual basis.
	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
Face	(Optional) Face or par value. Default = 100.
1-by-NUMBONDS co ([]) as a placehol	uments must be number of bonds (NUMBONDS) by 1 or onforming vectors or scalar arguments. Use an empty matrix der for an optional argument. Fill unspecified entries in input . Dates can be serial date numbers or date strings.
Maturity, Perio LastCouponDate fixed income secu determines the c periods in the co	, PerConvexity] = bndconvy(Yield, CouponRate, Settle, od, Basis, EndMonthRule, IssueDate, FirstCouponDate, , StartDate, Face) computes the convexity of NUMBONDS urities given the yield to maturity for each bond. This function onvexity for a bond whether or not the first or last coupon upon structure are short or long (i.e., whether or not the e is synchronized to maturity). This function also determines

Description

YearConvexity is the yearly (annualized) convexity; PerConvexity is the periodic convexity reported on a semiannual bond basis (in accordance with SIA convention). Both outputs are NUMBONDS-by-1 vectors.

the convexity of a zero coupon bond.

bndconvy

Examples Find the convexity of a bond at three different yield values. Yield = [0.04; 0.055; 0.06];CouponRate = 0.055; Settle = '02-Aug-1999'; Maturity = '15-Jun-2004'; Period = 2; Basis = 0; [YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,... Settle, Maturity, Period, Basis) YearConvexity = 21.4825 21.0358 20.8885 PerConvexity = 85,9298 84.1434 83.5541 See Also bndconvp, bnddurp, bnddury, cfconv, cfdur

Purpose	Bond duration given price (SIA compliant)	
Syntax	[ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)	
Arguments	Price	Clean price (excludes accrued interest).
	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
	Face	(Optional) Face or par value. Default = 100.
	All specified arguments must be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix ([]) as a placeholder for an optional argument. Fill unspecified entries in input vectors with NaN. Dates can be serial date numbers or date strings.	
Description	[ModDuration, YearDuration, PerDuration] = bnddurp(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) computes the duration of NUMBONDS fixed income securities given a clean price for each bond. This function determines the Macaulay and modified duration for a bond whether or not the first or last coupon periods in the coupon structure are short or long (i.e., whether or not the coupon structure is synchronized to maturity). This function also determines the Macaulay and modified duration for a zero coupon bond.	
	ModDuration is the modified duration in years; YearDuration is the Macaula duration in years; PerDuration is the periodic Macaulay duration reported of a semiannual bond basis (in accordance with SIA convention.) Outputs are	

NUMBONDS-by-1 vectors.

bnddurp

Examples Find the duration of three bonds given their prices. Price = [106; 100; 98]; CouponRate = 0.055;Settle = '02-Aug-1999'; Maturity = '15-Jun-2004'; Period = 2; Basis = 0; [ModDuration, YearDuration, PerDuration] = bnddurp(Price,... CouponRate, Settle, Maturity, Period, Basis) ModDuration = 4.2400 4.1925 4.1759 YearDuration = 4.3275 4.3077 4.3007 PerDuration = 8.6549 8.6154 8.6014 See Also bndconvp, bndconvy, bnddury

bnddury

Purpose	Bond duration given yield (SIA compliant)	
Syntax	[ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)	
Arguments	Yield	Yield to maturity on a semiannual basis.
	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.	
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.	
	Face	(Optional) Face or par value. Default = 100.	
	1-by-NUMBONDS con ([]) as a placehold	nents must be number of bonds (NUMBONDS) by 1 or forming vectors or scalar arguments. Use an empty matrix er for an optional argument. Fill unspecified entries in input Dates can be serial date numbers or date strings.	
Description	[ModDuration, YearDuration, PerDuration] = bnddury(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) computes the Macaulay and modified duration of NUMBONDS fixed income securities given yield to maturity for each bond. This function determines the duration for a bond whether or not the first or last coupon periods in the coupon structure are short or long (i.e., whether or not the coupon structure is synchronized to maturity). This function also determines the Macaulay and modified duration for a zero coupon bond.		
	ModDuration is the modified duration in years; YearDuration is the Macaulay duration in years; PerDuration is the periodic Macaulay duration reported on a semiannual bond basis (in accordance with SIA convention). Outputs are		

NUMBONDS-by-1 vectors.

bnddury

Examples	Find the duration of a bond at three different yield values.
	Yield = [0.04; 0.055; 0.06]; CouponRate = 0.055; Settle = '02-Aug-1999'; Maturity = '15-Jun-2004'; Period = 2; Basis = 0;
	[ModDuration,YearDuration,PerDuration]=bnddury(Yield, CouponRate, Settle, Maturity, Period, Basis)
	ModDuration =
	4.2444 4.1924
	4.1751
	YearDuration =
	4.3292
	4.3077 4.3004
	PerDuration =
	8.6585
	8.6154 8.6007

See Also bndconvp, bndconvy, bnddurp

Purpose	Price a fixed incom	e security from yield to maturity (SIA compliant)
Syntax	<pre>[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity) [Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)</pre>	
Arguments	Required and optional inputs can be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Optional inputs can also be passed as empty matrices ([]) or omitted at the end of the argument list. The value NaN in any optional input invokes the default value for that entry. Dates can be serial date numbers or date strings.	
	Yield	Bond yield to maturity on a semiannual basis.
	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always

the last actual day of the month.

bndprice

Description

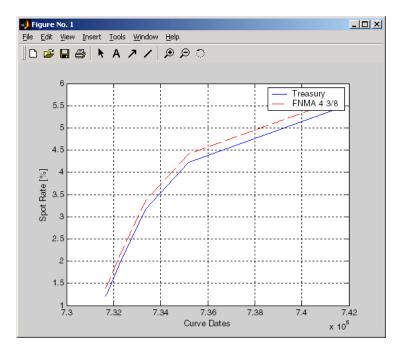
IssueDate	(Optional) Date when a bond was issued.	
FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.	
LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.	
StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.	
Face	(Optional) Face or par value. Default = 100.	
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) given bonds with SIA date parameters and semiannual yields to maturity, returns the clean prices and accrued interest due.		
Price is the clean price of the bond (current price without accrued interest).		
AccruedInt is the accrued interest payable at settlement.		
Price and Yield are	e related by the formula	

Price + Accrued_Interest = sum(Cash_Flow*(1+Yield/2)^(-Time))

where the sum is over the bonds' cash flows and corresponding times in units of semiannual coupon periods.

Examples Price a treasury bond at three different yield values. Yield = [0.04; 0.05; 0.06];CouponRate = 0.05;Settle = '20-Jan-1997'; Maturity = '15-Jun-2002'; Period = 2; Basis = 0; [Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,... Maturity, Period, Basis) Price = 104.8106 99.9951 95.4384 AccruedInt = 0.4945 0.4945 0.4945 See Also cfamounts, bndyield

bndspread


Purpose	Static spread over spot curve	
Syntax	<pre>Spread = bndspread(SpotInfo, Price, Coupon, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)</pre>	
Arguments	SpotInfo	Two-column matrix:
		[SpotDates ZeroRates]
		Zero rates correspond to maturities on the spot dates, continuously compounded. You will obtain the best results if you choose evenly spaced rates close together, for example, by using the three-month deposit rates.
	Price	Price for every \$100 notional amount of bonds whose spreads are computed.
	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A scalar or vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).

	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
Description	Period, Basis, En	d(SpotInfo, Price, Coupon, Settle, Maturity, dMonthRule, IssueDate, FirstCouponDate, mputes the static spread to benchmark in basis points.
Examples	Compute a FNMA 4	3/8 spread over a Treasury spot-curve.
-	% Build spot curve.	
		<pre>datenum('02/27/2003'); datenum('05/29/2003'); datenum('10/31/2004'); datenum('11/15/2007'); datenum('11/15/2012'); datenum('02/15/2031')];</pre>
	RefCpn = [0; 0;	

```
2.125;
          3;
          4;
          5.375] / 100;
RefPrices = [99.6964;
              99.3572;
             100.3662;
              99.4511;
              99.4299;
             106.5756];
RefBonds = [RefPrices, RefMaturity, RefCpn];
Settle = datenum('26-Nov-2002');
[ZeroRates, CurveDates] = zbtprice(RefBonds(:, 2:end), ...
RefPrices, Settle)
% FNMA 4 3/8 maturing 10/06 at 4.30 pm Tuesday, Nov 26, 2002
Price
         = 105.484;
Coupon
        = 0.04375;
Maturity = datenum('15-Oct-2006');
% All optional inputs are supposed to be accounted by default,
% except the accrued interest under 30/360 (SIA), so:
Period = 2;
Basis = 1;
SpotInfo = [CurveDates, ZeroRates];
% Compute static spread over treasury curve, taking into account
% the shape of curve as derived by bootstrapping method embedded
% within bndspread.
SpreadInBP = bndspread(SpotInfo, Price, Coupon, Settle, ...
Maturity, Period, Basis)
plot(CurveDates, ZeroRates*100, 'b', CurveDates, ...
ZeroRates*100+SpreadInBP/100, 'r--')
legend({'Treasury'; 'FNMA 4 3/8'})
xlabel('Curve Dates')
ylabel('Spot Rate [%]')
```

bndspread

grid; ZeroRates = 0.0121 0.0127 0.0194 0.0317 0.0423 0.0550 CurveDates = 731639 731730 732251 733361 735188 741854 SpreadInBP = 18.7582

bndprice, bndyield

Purpose	Yield to maturity for a fixed income security (SIA compliant)	
Syntax	Yield = bndyield(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)	
Arguments	Required and optional inputs can be number of bonds (NUMBONDS) by 1 or 1-by-NUMBONDS conforming vectors or scalar arguments. Optional inputs can also be passed as empty matrices ([]) or omitted at the end of the argument list. The value NaN in any optional input invokes the default value for that entry. Dates can be serial date numbers or date strings.	
	Price	Clean price of the bond (current price without accrued interest).
	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual}/360$, $3 = \text{actual}/365$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual}/365$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

bndyield

IssueDate	(Optional) Date when a bond was issued.
FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
Face	(Optional) Face or par value. Default = 100.

Description Yield = bndyield(Price, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) given NUMBONDS bonds with SIA date parameters and clean prices (excludes accrued interest), returns the bond equivalent yields to maturity.

Yield is a NUMBONDS-by-1 vector of the bond equivalent yields to maturity with semiannual compounding.

Price and Yield are related by the formula

```
Price + Accrued_Interest = sum(Cash_Flow*(1+Yield/2)^(-Time))
```

where the sum is over the bonds' cash flows and corresponding times in units of semiannual coupon periods.

Examples Compute the yield of a treasury bond at three different price values.

```
Price = [95; 100; 105];
CouponRate = 0.05;
Settle = '20-Jan-1997';
Maturity = '15-Jun-2002';
Period = 2;
Basis = 0;
Yield = bndyield(Price, CouponRate, Settle,...
Maturity, Period, Basis)
Yield =
0.0610
0.0500
0.0396
```

bolling

Purpose	Bollinger band chart		
Syntax	bolling(Asset, Samples, Alpha) [Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha, Width)		
Arguments	Asset	Vector of asset data.	
	Samples	Number of samples to use in computing the moving average.	
	Alpha	(Optional) Exponent used to compute the element weights of the moving average. Default = 0 (simple moving average).	
	Width	(Optional) Number of standard deviations to include in the envelope. A multiplicative factor specifying how tight the bands should be around the simple moving average. Default = 2.	
Description	bolling(Asset, Samples, Alpha, Width) plots Bollinger bands Asset data. This form of the function does not return any data.		
	[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha, Width) returns Movavgv with the moving average of the Asset data, UpperBan with the upper band data, and LowerBand with the lower band data. This form of the function does not plot any data.		
	Note The standard deviations are normalized by N-1, where N = the sequence length.		
Examples	If Asset is	s a column vector of closing stock prices	
	bollir	ng(Asset, 20, 1)	
	plots linea	ar 20-day moving average Bollinger bands based on the stock prices.	
	[Movav	/gv, UpperBand, LowerBand] = bolling(Asset, 20, 1)	
		ovavgv, UpperBand, and LowerBand as vectors containing the moving upper band, and lower band data, without plotting the data.	

See Also candle, dateaxis, highlow, movavg, pointfig

busdate

Purpose	Next or previous business day		
Syntax	Busday = busdate(Date, Direction, Holiday, Weekend)		
Arguments	 Date Reference date. Enter as serial date number or date string. Direction (Optional) Direction. 1 = next (default) or -1 = previous busines day. Holiday (Optional) Vector of holidays and nontrading-day dates. All dat 		
		in Holiday must be the same format: either serial date numbers or date strings. (Using serial date numbers improves performance.) The holidays function supplies the default vector.	
	Weekend	(Optional) Vector of length 7, containing 0 and 1, the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), Weekend = [1 0 0 0 0 0 1].	
Description	-	busdate(Date, Direction, Holiday, Weekend) returns the serial ber of the next or previous business day from the reference date.	
	Use the fu strings.	unction datestr to convert serial date numbers to formatted date	
Examples	Example	1:	
	Busday Busday	= busdate('3-Jul-2001', 1) =	
	7	31037	
	datest	r(Busday)	
	ans =		
	05-Jul	-2001	
	-	2: You can indicate that Saturday is a business day by appropriately e Weekend argument.	

Weekend = $[1 \ 0 \ 0 \ 0 \ 0 \ 0];$

July 4, 2003, falls on a Friday. Use busdate to verify that Saturday, July 5, is actually a business day.

```
Date = datestr(busdate('3-Jul-2001', 1, , Weekend))
```

See Also holidays, isbusday

candle

Purpose	Candlestick chart			
Syntax	candle(H	candle(High, Low, Close, Open, Color)		
Arguments	High Low Close Open Color	 High prices for a security. A column vector. Low prices for a security. An column vector. Closing prices for a security. A column vector. Opening prices for a security. A column vector. (Optional) Candlestick color. A string. MATLAB supplies a default color if none is specified. The default color differs depending on the background color of the figure window. See ColorSpec in the MATLAB documentation for color names. 		
Description	column v If the close between	High, Low, Close, Open, Color) plots a candlestick chart given ectors with the high, low, closing, and opening prices of a security. sing price is greater than the opening price, the body (the region the opening and closing price) is unfilled. ening price is greater than the closing price, the body is filled.		
Examples	candl	gh, Low, Close, and Open as equal-size vectors of stock price data e(High, Low, Close, Open, 'cyan') andlestick chart with cyan candles.		
See Also	bolling,	dateaxis, highlow, movavg, pointfig		

Purpose	Cash flow and time mapping for bond portfolio (SIA compliant)				
Syntax	[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = cfamounts(CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)				
Arguments	CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.			
	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.			
	Maturity	Maturity date. A vector of serial date numbers or date strings.			
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.			
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).			
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.			
	IssueDate	(Optional) Date when a bond was issued.			
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.			

Description

LastCouponDate	 (Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
Face	(Optional) Face or par value. Default = 100.
cfamounts (Coup EndMonthRule, StartDate, Fac time factors, and securities. The e matrix, and cash security. The fir interest payable This function de or not the coupo	CFlowDates, TFactors, CFlowFlags] = bonRate, Settle, Maturity, Period, Basis, IssueDate, FirstCouponDate, LastCouponDate, ee) returns matrices of cash flow amounts, cash flow dates, d cash flow flags for a portfolio of NUMBONDS fixed income elements contained in the cash flow matrix, time factor in flow flag matrix correspond to the cash flow dates for each st element of each row in the cash flow matrix is the accrued on each bond. This is zero in the case of all zero coupon bonds. termines all cash flows and time mappings for a bond whether n structure contains odd first or last periods. All output
matrices are pac same number of	dded with NaNs as necessary to ensure that all rows have the elements.
CFlowAmounts is represents the c	the cash flow matrix of a portfolio of bonds. Each row

CFlowDates is the cash flow date matrix of a portfolio of bonds. Each row represents a single bond in the portfolio. Each element in a column represents a cash flow date of that bond.

TFactors is the matrix of time factors for a portfolio of bonds. Each row corresponds to the vector of time factors for each bond. Each element in a column corresponds to the specific time factor associated with each cash flow of a bond. Time factors are useful in determining the present value of a stream of cash flows. The term "time factor" refers to the exponent *TF* in the discounting equation

$$PV = CF/(1+z/2)^{TF}$$

where:

PV = present value of a cash flow

CF = the cash flow amount

- z = the risk-adjusted annualized rate or yield corresponding to given cash flow. The yield is quoted on a semiannual basis.
- TF = time factor for a given cash flow. Time is measured in semiannual periods from the settlement date to the cash flow date. In computing time factors, we use SIA actual/actual day count conventions for all time factor calculations.

CFlowFlags is the matrix of cash flow flags for a portfolio of bonds. Each row corresponds to the vector of cash flow flags for each bond. Each element in a column corresponds to the specific flag associated with each cash flow of a bond. Flags identify the type of each cash flow (e.g., nominal coupon cash flow, front or end partial or "stub" coupon, maturity cash flow). Possible values are shown in the table.

Flag	Cash Flow Type
0	Accrued interest due on a bond at settlement.
1	Initial cash flow amount smaller than normal due to "stub" coupon period. A stub period is created when the time from issue date to first coupon is shorter than normal.

cfamounts

	Cash Flow Type
2	Larger than normal initial cash flow amount because first coupon period is longer than normal.
3	Nominal coupon cash flow amount.
4	Normal maturity cash flow amount (face value plus the nominal coupon amount).
5	End "stub" coupon amount (last coupon period abnormally short and actual maturity cash flow is smaller than normal).
6	Larger than normal maturity cash flow because last coupon period longer than normal.
7	Maturity cash flow on a coupon bond when the bond has less than one coupon period to maturity.
8	Smaller than normal maturity cash flow when bond has less than one coupon period to maturity.
9	Larger than normal maturity cash flow when bond has less than one coupon period to maturity.
10	Maturity cash flow on a zero coupon bond.
Conside treasu tructu Sett Matu Coup Peri Basi	<pre>Maturity cash flow on a zero coupon bond. er a portfolio containing a corporate bond paying interest quarterly are any bond paying interest semiannually. Compute the cash flow re and the time factors for each bond. end = '01-Nov-1993'; entry = ['15-Dec-1994';'15-Jun-1995']; enRate= [0.06; 0.05]; end = [4; 2]; end = [4; 2]; end = [1; 0]; envAmounts, CFlowDates, TFactors, CFlowFlags] =</pre>
Conside treasu tructu Sett Matu Coup Peri Basi [CF1	<pre>er a portfolio containing a corporate bond paying interest quarterly and ary bond paying interest semiannually. Compute the cash flow re and the time factors for each bond. The = '01-Nov-1993'; The inity = ['15-Dec-1994';'15-Jun-1995']; The inity = [0.06; 0.05]; The inity = [4; 2]; The inity = [1; 0];</pre>
Conside trease tructu Sett Matu Coup Peri Basi [CF1 cfam	<pre>er a portfolio containing a corporate bond paying interest quarterly and ary bond paying interest semiannually. Compute the cash flow re and the time factors for each bond. le = '01-Nov-1993'; rity = ['15-Dec-1994';'15-Jun-1995']; ponRate= [0.06; 0.05]; od = [4; 2]; s = [1; 0]; .owAmounts, CFlowDates, TFactors, CFlowFlags] =</pre>

Examples

- 1	1.8989	2.	5000	2.50	000	2.5000	102.5000	NaN
CFlo	owDates	3 =						
7282 7282	-	7282 7282	-	72830 72840		728460 728643	728552 728825	728643 Nai
TFac	ctors =	=						
0 0	0.240 0.240		0.7403 1.2404		.2404 .2404	1.740 3.240		
CFlo	owFlags	3 =						
0	3	3	3	3	4			
0	3	3	3	4	NaN			

See Also accrfrac, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

cfconv

Purpose	Cash flow convexity		
Syntax	CFlowConvexity = cfconv(CashFlow, Yield)		
Arguments	CashFlow A vector of real numbers. Yield Periodic yield. A scalar. Enter as a decimal fraction.		
Description	CFlowConvexity = cfconv(CashFlow, Yield) returns the convexity of a cash flow in periods.		
Examples	Given a cash flow of nine payments of \$2.50 and a final payment \$102.50, with a periodic yield of 2.5% CashFlow = [2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];		
	Convex = cfconv(CashFlow, 0.025)		
	Convex =		
	90.4493 (periods)		
See Also	bndconvp. bndconvy, bnddurp, bnddury, cfdur		

Purpose	Cash flow dates for a fixed-income security (SIA compliant)		
Syntax	CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)		
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.	
	Maturity	Maturity date. A vector of serial date numbers or date strings.	
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual}/360$, $3 = \text{actual}/365$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual}/365$ (Japanese).	
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.	
	IssueDate	(Optional) Date when a bond was issued.	
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.	

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
	1-by-NUMBONDS confo	s must be number of bonds (NUMBONDS) by 1 or orming vectors or scalars. Optional arguments must be 1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
	the same number of	in multiple values, but if so, all other inputs must contain values or a single value that applies to all. For example, if N dates, then Settle must contain N dates or a single date.
Description	CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRul IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns a matrix of cash flow dates for a bond or set of bonds. cfdates determines all c flow dates for a bond whether or not the coupon payment structure is norm or the first and/or last coupon period is long or short.	
	necessary to ensure	row matrix of serial date numbers, padded with NaNs as that all rows have the same number of elements. Use the convert serial date numbers to formatted date strings.

Note The cash flow flags for a portfolio of bonds were formerly available as the cfdates second output argument, CFlowFlags. You can now use cfamounts to get these flags. If you specify a CFlowFlags argument, cfdates displays a message directing you to use cfamounts.

Examples

```
CFlowDates = cfdates('14 Mar 1997', '30 Nov 1998', 2, 0, 1)

CFlowDates =

729541 729724 729906 730089

datestr(CFlowDates)

ans =

31-May-1997

30-Nov-1997

31-May-1998

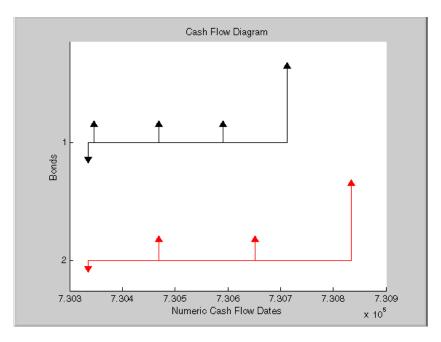
30-Nov-1998
```

Given three securities with different maturity dates and the same default arguments

Maturity = ['30	-Sep-1997';	'31-0ct-1998	'; '30-Nov-1998'];	
CFlowDates = cfdates('14-Mar-1997', Maturity)				
CFlowDates =				
729480	729663	NaN	NaN	
729510	729694	729875	730059	
729541	729724	729906	730089	

Look at the cash-flow dates for the last security.

```
datestr(CFlowDates(3,:))
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998
```


See Also accrfrac, cfamounts, cftimes, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysp, cpnpersz

cfdur

Purpose	Cash-flow duration and modified duration		
Syntax	[Duration, ModDuration] = cfdur(CashFlow, Yield)		
Arguments	CashFlowA vector of real numbers.YieldPeriodic yield. A scalar. Enter as a decimal fraction.		
Description	[Duration, ModDuration] = cfdur(CashFlow, Yield) calculates the duration and modified duration of a cash flow in periods.		
Examples	Given a cash flow of nine payments of \$2.50 and a final payment \$102.50, with a periodic yield of 2.5%		
	CashFlow=[2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5]; [Duration, ModDuration] = cfdur(CashFlow, 0.025) Duration = 8.9709 (periods)		
	ModDuration = 8.7521 (periods)		
See Also	bndconvp, bndconvy, bnddurp, bnddury, cfconv		

Purpose	Portfolio form of cash flow amounts	
Syntax	[CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts, CFlowDates, TFactors)	
Arguments	CFlowAmounts	Number of bonds (NUMBONDS) by number of cash flows (NUMCFS) matrix with entries listing cash flow amounts corresponding to each date in CFlowDates.
	CFlowDates	NUMBONDS-by-NUMCFS matrix with rows listing cash flow dates for each bond and padded with NaNs.
	TFactors	(Optional) NUMBONDS-by-NUMCFS matrix with entries listing the time between settlement and the cash flow date measured in semiannual coupon periods.
Description	 [CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts, CFlowDates, TFactors) computes a vector of all cash flow dates of a bond portfolio, and a matrix mapping the cash flows of each bond to those dates. Use the matrix for pricing the bonds against a curve of discount factors. CFBondDate is a NUMBONDS by number of dates (NUMDATES) matrix of cash flows indexed by bond and by date in AllDates. Each row contains a bond's cash flow values at the indices corresponding to entries in AllDates. Other indices in the row contain zeros. AllDates is a NUMDATES-by-1 list of all dates that have any cash flow from the bond portfolio. 	
	AllTF is a NUMDATES-by-1 list of time factors corresponding to the dates in AllDates. If TFactors is not entered, AllTF contains the number of days from the first date in AllDates.	
	list of indices into A	BONDS-by-NUMCFS matrix of indices. The <i>i</i> th row contains a llDates where the <i>i</i> th bond has cash flows. Since some ash flows than others, the matrix is padded with NaNs.
Examples		alculate the cash flow amounts, cash flow dates, and time wo bonds. Then use cfplot to plot the cash flow diagram.

```
Settle = '03-Aug-1999';
Maturity = ['15-Aug-2000';'15-Dec-2000'];
CouponRate= [0.06; 0.05];
Period = [3;2];
Basis = [1;0];
[CFlowAmounts, CFlowDates, TFactors] = cfamounts(CouponRate,...
Settle, Maturity, Period, Basis);
cfplot(CFlowDates,CFlowAmounts)
xlabel('Numeric Cash Flow Dates')
ylabel('Bonds')
title('Cash Flow Diagram')
```


Finally, call cfport to map the cash flow amounts to the cash flow dates.

Each row in the resultant CFBondDate matrix represents a bond. Each column represents a date on which one or more of the bonds has a cash flow. A 0 means the bond did not have a cash flow on that date. The dates associated with the columns are listed in AllDates. For example, the first bond had a cash flow of 2.000 on 730347. The second bond had no cash flow on this date.

For each bond, IndByBond indicates the columns of CFBondDate, or dates in AllDates, for which a bond has a cash flow.

```
[CFBondDate, AllDates, AllTF, IndByBond] = ...
  cfport(CFlowAmounts, CFlowDates, TFactors)
  CFBondDate =
    -1.8000 2.0000 2.0000
                              2.0000
                                           0
                                              102.0000
                                                                0
    -0.6694
                  0 2.5000
                                   0 2.5000
                                                     0 102.5000
  AllDates =
        730335
        730347
        730469
        730591
        730652
        730713
        730835
  AllTF =
           0
      0.0663
      0.7322
      1.3989
      1.7322
      2.0663
      2.7322
  IndByBond =
       1
             2
                   З
                                6
                          4
       1
             3
                   5
                          7
                              NaN
cfamounts
```

See Also

cftimes

Purpose	Time factors corresponding to bond cash flow dates (SIA compliant)	
Syntax	TFactors=cftimes(Settle,Maturity,Period,Basis,EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate)	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \operatorname{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \operatorname{actual/360}$, $3 = \operatorname{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \operatorname{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.

Description TFactors = cftimes(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate) determines the time factors corresponding to the cash flows of a bond or set of bonds. The time factor of a cash flow is the difference between the settlement date and the cash flow date in units of semiannual coupon periods. In computing time factors, we use SIA actual/actual day count conventions for all time factor calculations.

Examples	Maturity = '01-Sep- Period = 2;		,		d)
	0.9239	1.9239	2.9239	3.9239	4.9239
See Also	accrfrac, cfdate	es, cfamount	ts, cpncount	, cpndaten,	cpndatenq, cpndatep,

cpndatepq, cpndaysn, cpndaysp, cpnpersz, date2time

corr2cov

Purpose	Convert standard deviation and correlation to covariance		
Syntax	ExpCovariance = corr2cov(ExpSigma, ExpCorrC)		
Arguments	ExpSigma Vector of length n with the standard deviations of each process. n is the number of random processes.		
	ExpCorrC (Optional) n-by-n correlation coefficient matrix. If ExpCorrC is not specified, the processes are assumed to be uncorrelated, and the identity matrix is used.		
Description	corr2cov converts standard deviation and correlation to covariance.		
	ExpCovariance is an n-by-n covariance matrix, where n is the number of processes.		
	<pre>ExpCov(i,j) = ExpCorrC(i,j)*(ExpSigma(i)*ExpSigma(j)</pre>		
Examples	ExpSigma = [0.5 2.0];		
	ExpCorrC = [1.0 -0.5 -0.5 1.0];		
	<pre>ExpCovariance = corr2cov(ExpSigma, ExpCorrC)</pre>		
	Expected results:		
	ExpCovariance =		
	0.2500 -0.5000 -0.5000 4.0000		
See Also	corrcoef, cov, cov2corr, ewstats, std		

Purpose	Convert covariance to standard deviation and correlation coefficient	
Syntax	[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)	
Arguments	ExpCovariance n-by-n covariance matrix, e.g., from cov or ewstats. n is the number of random processes.	
Description	[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance) converts covariance to standard deviations and correlation coefficients.	
	ExpSigma is a 1-by-n vector with the standard deviation of each process.	
	ExpCorrC is an n-by-n matrix of correlation coefficients.	
	ExpSigma(i) = sqrt(ExpCovariance(i,i)) ExpCorrC(i,j) = ExpCovariance(i,j)/(ExpSigma(i)*ExpSigma(j))	
Examples	ExpCovariance = [0.25 -0.5 -0.5 4.0];	
	[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)	
	Expected results:	
	ExpSigma =	
	0.5000 2.0000	
	ExpCorrC =	
	1.0000 -0.5000 -0.5000 1.0000	
See Also	corr2cov, corrcoef, cov, ewstats, std	

cpncount

Purpose	Coupon payments remaining until maturity (SIA compliant)	
Syntax		.ng = cpncount(Settle, Maturity, Period, Basis, IssueDate, FirstCouponDate, LastCouponDate,
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \operatorname{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \operatorname{actual/360}$, $3 = \operatorname{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \operatorname{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
	1-by-NUMBONDS confe	s must be number of bonds (NUMBONDS) by 1 or orming vectors or scalars. Optional arguments must be 1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
Description	EndMonthRule) retu	ng = cpncount(Settle, Maturity, Period, Basis, arns the whole number of coupon payments between the urity dates for a coupon bond or set of bonds.
Examples	NumCouponsRema 2, 0, 0) n = 8	ining = cpncount('14 Mar 1997', '30 Nov 2000',

cpncount

See Also

Given three coupon bonds with different maturity dates and the same default arguments

```
Maturity = ['30 Sep 2000'; '31 Oct 2001'; '30 Nov 2002'];
NumCouponsRemaining = cpncount('14 Sep 1997', Maturity)
NumCouponsRemaining =
7
9
11
accrfrac, cfamounts, cfdates, cftimes, cpndaten, cpndatenq, cpndatep,
```

cpndatepq, cpndaysn, cpndaysp, cpnpersz

Purpose	Next coupon date for fixed-income security (SIA compliant)	
Syntax	NextCouponDate = cpndaten(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \operatorname{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \operatorname{actual/360}$, $3 = \operatorname{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \operatorname{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.

	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	1-by-NUMBONDS confe	as must be number of bonds (NUMBONDS) by 1 or forming vectors or scalars. Optional arguments must be -1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
Description	NextCouponDate = cpndaten(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) returns the next coupon date after the settlement date. This function finds the next coupon date whether or not the coupon structure is synchronized with the maturity date.	
		returned as a serial date number. The function datestr te number to a formatted date string.
Examples	NextCouponDate	= cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 0);
	datestr(NextCo	uponDate)
	ans = 30-May-1997	
	50 may 1001	

```
NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 1);
datestr(NextCouponDate)
ans =
31-May-1997
Maturity = ['30 Sep 2000'; '31 Oct 2000'; '30 Nov 2000'];
NextCouponDate = cpndaten('14 Mar 1997', Maturity);
datestr(NextCouponDate)
ans =
31-Mar-1997
30-Apr-1997
31-May-1997
```

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndatenq, cpndatep, cpndatepq, cpndaysn, cpndaysp, cpnpersz

cpndatenq

Purpose	Next quasi coupon date for fixed income security (SIA compliant)	
Syntax	NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.

	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.	
	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.	
	1-by-NUMBONDS confeither NUMBONDS-by-	as must be number of bonds (NUMBONDS) by 1 or corming vectors or scalars. Optional arguments must be -1 or 1-by-NUMBONDS conforming vectors, scalars, or empty scified entries in input vectors with the value NaN. Dates can bers or date strings.	
Description	EndMonthRule, Iss determines the next securities whether zero coupon bonds of semiannual coupon length of the standa	ate = cpndatenq(Settle, Maturity, Period, Basis, sueDate, FirstCouponDate, LastCouponDate) t quasi coupon date for a portfolio of NUMBONDS fixed income or not the first or last coupon is normal, short, or long. For cpndatenq returns quasi coupon dates as if the bond had a structure. Successive quasi coupon dates determine the ard coupon period for the fixed income security of interest rily coincide with actual coupon payment dates.	
	Outputs are NUMBONDS-by-1 vectors.		
	-	on date, this function never returns the settlement date. It pupon date strictly after settlement.	
		ate is returned as a serial date number. The function serial date number to a formatted date string.	
Examples	Given a pair of bone	ds with the characteristics	
		'30-May-1997','10-Dec-1997'); r('30-Nov-2002','10-Jun-2004');	

cpndatenq

Compute NextCouponDate for this pair of bonds.

```
NextCouponDate = cpndaten(Settle, Maturity);
```

datestr(NextCouponDate)

ans =

31-May-1997 10-Jun-1998

Compute the next quasi coupon dates for these two bonds.

NextQuasiCouponDate = cpndatenq(Settle, Maturity);

datestr(NextQuasiCouponDate)

ans = 31-May-1997 10-Jun-1998

Because no FirstCouponDate has been specified, the results are identical.

Now supply an explicit FirstCouponDate for each bond.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');

Compute the next coupon dates.

```
NextCouponDate = cpndaten(Settle, Maturity, 2, 0, 1, [],...
FirstCouponDate);
```

datestr(NextCouponDate)

ans = 30-Nov-1997 10-Dec-1998

The next coupon dates are identical to the specified first coupon dates.

Now recompute the next quasi coupon dates.

```
NextQuasiCouponDate = cpndatenq(Settle, Maturity, 2, 0, 1, [],...
                       FirstCouponDate);
                       datestr(NextQuasiCouponDate)
                       ans =
                       31-May-1997
                       10-Jun-1998
                    These results illustrate the distinction between actual coupon payment dates
                    and quasi coupon dates. FirstCouponDate (and LastCouponDate, as well),
                    when specified, is associated with an actual coupon payment and also serves as
                    the synchronization date for determining all quasi coupon dates. Since each
                    bond in this example pays semiannual coupons, and the first coupon date
                    occurs more than six months after settlement, each will have an intermediate
                    quasi coupon date before the actual first coupon payment occurs.
See Also
                    accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatep,
                    cpndatepq, cpndaysn, cpndaysp, cpnpersz
```

cpndatep

Purpose	Previous coupon dat	e for fixed-income security (SIA compliant)
Syntax	-	e = cpndatep(Settle, Maturity, Period, Basis, SsueDate, FirstCouponDate, LastCouponDate)
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.

	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	1-by-NUMBONDS confor	must be number of bonds (NUMBONDS) by 1 or rming vectors or scalars. Optional arguments must be l or 1-by-NUMBONDS conforming vectors, scalars, or empty
Description	EndMonthRule, Issu the previous coupon	e = cpndatep(Settle, Maturity, Period, Basis, ueDate, FirstCouponDate, LastCouponDate) returns date on or before settlement for a portfolio of bonds. This evious coupon date whether or not the coupon structure is ne maturity date.
	However, if the issue	ds the previous coupon date is the issue date, if available. e date is not supplied, the previous coupon date for zero previous quasi coupon date calculated as if the frequency
	•	e is returned as a serial date number. The function serial date number to a formatted date string.

cpndatep

Examples PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',... 2, 0, 0);datestr(PreviousCouponDate) ans = 30-Dec-1996 PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',... 2, 0, 1); datestr(PreviousCouponDate) ans = 31-Dec-1996 Maturity = ['30 Apr 2000'; '31 May 2000'; '30 Jun 2000']; PreviousCouponDate = cpndatep('14 Mar 1997', Maturity); datestr(PreviousCouponDate) ans = 31-Oct-1996 30-Nov-1996 31-Dec-1996 See Also

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, cpndatepq, cpndaysp, cpnpersz

Purpose	Previous quasi coup	Previous quasi coupon date for fixed income security (SIA compliant)	
Syntax		PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.	
	Maturity	Maturity date. A vector of serial date numbers or date strings.	
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \operatorname{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \operatorname{actual/360}$, $3 = \operatorname{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \operatorname{actual/365}$ (Japanese).	
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.	
	IssueDate	(Optional) Date when a bond was issued.	

	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	1-by-NUMBONDS confo either NUMBONDS-by-	s must be number of bonds (NUMBONDS) by 1 or orming vectors or scalars. Optional arguments must be 1 or 1-by-NUMBONDS conforming vectors, scalars, or empty cified entries in input vectors with the value NaN. Dates can ers or date strings.
Description	Basis, EndMonthRu determines the prev NUMBONDS fixed incor date for a bond with normal, short, or lor maturity). For zero	onDate = cpndatepq(Settle, Maturity, Period, le, IssueDate, FirstCouponDate, LastCouponDate) ious quasi coupon date on or before settlement for a set of ne securities. This function finds the previous quasi coupon a coupon structure in which the first or last period is either ng (whether or not the coupon structure is synchronized to coupon bonds this function returns quasi coupon dates as miannual coupon structure.
	bond calculated as it not actually a coupo coupon date for a bo coupon date or the i returns the previous	quasi coupon date" refers to the previous coupon date for a f no issue date were specified. Although the issue date is n date, when issue date is specified, the previous actual nd is normally calculated as being either the previous ssue date, whichever is greater. This function always s quasi coupon date regardless of issue date. If the coupon date, this function returns the settlement date.
		onDate is returned as a serial date number. The function serial date number to a formatted date string.

Examples Given a pair of bonds with the characteristics

```
Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');
```

With no FirstCouponDate explicitly supplied, compute the PreviousCouponDate for this pair of bonds.

```
PreviousCouponDate = cpndatep(Settle, Maturity);
```

datestr(PreviousCouponDate)

ans =

30-Nov-1996 10-Dec-1997

Note that since the settlement date for the second bond is also a coupon date, cpndatep returns this date as the previous coupon date.

Now establish a FirstCouponDate and IssueDate for this pair of bonds.

```
FirstCouponDate = char('30-Nov-1997','10-Dec-1998');
IssueDate = char('30-May-1996', '10-Dec-1996');
```

Recompute the PreviousCouponDate for this pair of bonds.

```
PreviousCouponDate = cpndatep(Settle, Maturity, 2, 0, 1, ...
IssueDate, FirstCouponDate);
datestr(PreviousCouponDate)
ans =
30-May-1996
10-Dec-1996
```

Since both of these bonds settled before the first coupon had been paid, cpndatep returns the IssueDate as the PreviousCouponDate.

cpndatepq

Using the same data, compute PreviousQuasiCouponDate.

```
PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, 2, 0, 1,...
IssueDate, FirstCouponDate);
```

datestr(PreviousQuasiCouponDate)

ans =

30-Nov-1996 10-Dec-1997

For the first bond the settlement date is not a normal coupon date. The PreviousQuasiCouponDate is the coupon date prior to or on the settlement date. Since the coupon structure is synchronized to FirstCouponDate, the previous quasi coupon date is 30-Nov-1996. PreviousQuasiCouponDate disregards IssueDate and FirstCouponDate in this case. For the second bond the settlement date (10-Dec-1997) occurs on a date when a coupon would normally be paid in the absence of an explicit FirstCouponDate. cpndatepq returns this date as PreviousQuasiCouponDate.

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, cpndatep, cpndaysp, cpnpersz

Purpose	Number of days to	next coupon date (SIA compliant)
Syntax		ndaysn(Settle, Maturity, Period, Basis, IssueDate, FirstCouponDate, LastCouponDate,
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \operatorname{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \operatorname{actual/360}$, $3 = \operatorname{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \operatorname{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
	1-by-NUMBONDS confo	s must be number of bonds (NUMBONDS) by 1 or orming vectors or scalars. Optional arguments must be 1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
Description	EndMonthRule, Iss StartDate) returns coupon date for a bo	daysn(Settle, Maturity, Period, Basis, sueDate, FirstCouponDate, LastCouponDate, s the number of days from the settlement date to the next nd or set of bonds. For zero coupon bonds coupon dates are bonds have a semiannual coupon structure.
Examples	NumDaysNext = 0	cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 0)
	NumDaysNext =	
	107	
	NumDaysNext = 0	cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 1)
	NumDaysNext =	
	108	

```
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];
NumDaysNext = cpndaysn('14 Sep 2000', Maturity)
NumDaysNext =
47
77
108
```

See Also accrfrac, cfamounts, cftimes, cfdates, cpncount, cpndaten, cpndatenq, cpndatepq, cpndaysp, cpnpersz

cpndaysp

Purpose	Number of days sinc	e previous coupon date (SIA compliant)
Syntax		cpndaysp(Settle, Maturity, Period, Basis, ssueDate, FirstCouponDate, LastCouponDate,
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
	1-by-NUMBONDS confo	s must be a number of bonds (NUMBONDS) by 1 or rming vectors or scalars. Optional arguments must be 1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
Description	EndMonthRule, Iss StartDate) returns the settlement date	cpndaysp(Settle, Maturity, Period, Basis, ueDate, FirstCouponDate, LastCouponDate, the number of days between the previous coupon date and for a bond or set of bonds. When the coupon frequency is 0 , the previous coupon date is calculated as if the frequency
Examples	NumDaysPrevious	s = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 0)
	NumDaysPrevious	; =
	75	
	NumDaysPrevious	= cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 1)
	NumDaysPrevious	; =
	74	

```
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];
NumDaysPrevious = cpndaysp('14 Mar 2000', Maturity)
NumDaysPrevious =
135
105
74
```

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq, cpndatepq, cpndaysn, cpnpersz

Purpose	Number of days in o	coupon period (SIA compliant)
Syntax		pnpersz(Settle, Maturity, Period, Basis, IssueDate, FirstCouponDate, LastCouponDate,
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than or equal to Maturity.
	Maturity	Maturity date. A vector of serial date numbers or date strings.
	Period	(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
	IssueDate	(Optional) Date when a bond was issued.
	FirstCouponDate	(Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

	LastCouponDate	(Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
	StartDate	(Future implementation; optional) Date when a bond actually starts (the date from which a bond's cash flows can be considered). To make an instrument forward-starting, specify this date as a future date. If StartDate is not explicitly specified, the effective start date is the settlement date.
	1-by-NUMBONDS confo	s must be a number of bonds (NUMBONDS) by 1 or orming vectors or scalars. Optional arguments must be 1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
Description	EndMonthRule, Iss StartDate) returns settlement date. For	epnpersz(Settle, Maturity, Period, Basis, sueDate, FirstCouponDate, LastCouponDate, s the number of days in the coupon period containing the r zero coupon bonds coupon dates are computed as if the nnual coupon structure.
Examples	NumDaysPeriod :	= cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 0)
	NumDaysPeriod :	=
	183	
	NumDaysPeriod :	= cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 1)
	NumDaysPeriod :	=
	184	

```
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];
NumDaysPeriod = cpnpersz('14 Sep 2000', Maturity)
NumDaysPeriod =
    184
    183
    184
```

See Also accrfrac, cfamounts, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq, cpndaysp

cur2frac

Purpose	Decimal currency values to fractional values
Syntax	Fraction = cur2frac(Decimal, Denominator)
Description	Fraction = cur2frac(Decimal, Denominator) converts decimal currency values to fractional values. Fraction is returned as a string.
Examples	Fraction = cur2frac(12.125, 8)
	returns Fraction = 12.1, a string.
See Also	cur2str, frac2cur

Purpose	Bank formatted text
Syntax	<pre>String = cur2str(Value, Digits)</pre>
Description	<pre>String = cur2str(Value, Digits) returns the given value in bank format. By default, Digits = 2. A negative Digits rounds the value to the left of the decimal point. String is returned as a string with a leading dollar sign (\$). Negative numbers are displayed in parentheses.</pre>
Examples	<pre>String = cur2str(-8264, 2)</pre>
	<pre>returns String = (\$8264.00)</pre>
See Also	cur2frac, frac2cur

date2time

Purpose	Time and frequency from dates	
Syntax	<pre>[TFactors, F] = date2time(Settle, Dates, Compounding, Basis, EndMonthRule)</pre>	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings.
	Dates	A vector of dates corresponding to the compounding value.
	Compounding	(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors:
		Compounding = 1, 2, 3, 4, 6, 12 (Default = 2.)
		<pre>Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the time in periodic units, e.g. T = F is one year.</pre>
		Compounding = 365
		<pre>Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number of days elapsed computed by basis.</pre>
		Compounding = -1
		Disc = exp(-T*Z), where T is time in years.

	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
Description		late2time(Settle, Dates, Compounding, Basis, aputes time factors appropriate to compounded rate quotes ent date.
	TFactors is a vector	r of time factors.
	F is a scalar of relat	ed compounding frequencies.
	date2time is the inv	verse of time2date.
See Also	cftimes, disc2rate	e, rate2disc, time2date

dateaxis

Purpose	Convert serial-	date axis labels to calendar-date axis labels
Syntax	dateaxis(Aksi	s, DateForm, StartDate)
Arguments	Aksis	(Optional) Determines which axis tick labels— x , y , or z —to replace. Enter as a string. Default = 'x'.
	DateForm	(Optional) Specifies which date format to use. Enter as an integer from 0 to 17. If no DateForm argument is entered, this function determines the date format based on the span of the axis limits. For example, if the difference between the axis minimum and maximum is less than 15, the tick labels are converted to three-letter day-of-the-week abbreviations (DateForm = 8). See DateForm format descriptions below.
	StartDate	(Optional) Assigns the date to the first axis tick value. Enter as a string. The tick values are treated as serial date numbers. The default StartDate is the lower axis limit converted to the appropriate date number. For example, a tick value of 1 is converted to the date 01-Jan-0000. Entering StartDate as '06-apr-1999' assigns the date April 6, 1999 to the first tick value and the axis tick labels are set accordingly.

Description dateaxis(Aksis, DateForm, StartDate) replaces axis tick labels with date labels on a graphic figure.

See the MATLAB set command for information on modifying the axis tick values and other axis parameters.

DateForm	Format	Description
0	01-Mar-1999 15:45:17	day-month-year hour:minute:second
1	01-mar-1999	day-month-year
2	03/01/99	month/day/year
3	Mar	month, three letters

DateForm	Format	Description	
4	М	month, single letter	
5	3	month	
6	03/01	month/day	
7	1	day of month	
8	Wed	day of week, three letters	
9	W	day of week, single letter	
10	1999	year, four digits	
11	99	year, two digits	
12	Mar99	month year	
13	15:45:17	hour:minute:second	
14	03:45:17 PM	hour:minute:second AM or PM	
15	15:45	hour:minute	
16	03:45 PM	hour:minute AM or PM	
17	95/03/01	year month day	
	('x') or dateaxis	tomatically determined date format.	

dateaxis('y', 6)

Examples

converts the *y*-axis labels to the month/day format.

dateaxis('x', 2, '03/03/1999')

converts the x-axis labels to the month/day/year format. The minimum x-tick value is treated as March 3, 1999.

See Also bolling, candle, datenum, datestr, highlow, movavg, pointfig

datedisp

Purpose	Display date entries
Syntax	datedisp(NumMat, DateForm) CharMat = datedisp(NumMat, DateForm)
Arguments	NumMatNumeric matrix to displayDateForm(Optional) Date format. See datestr for available and default
	DateForm (Optional) Date format. See datestr for available and default format flags.
Description	datedisp(NumMat, DateForm) displays a matrix with the serial dates formatted as date strings, using a matrix with mixed numeric entries and serial date number entries. Integers between datenum('01-Jan-1900') and datenum('01-Jan-2200') are assumed to be serial date numbers, while all other values are treated as numeric entries.
	CharMat is a character array representing NumMat. If no output variable is assigned, the function prints the array to the display.
Examples	NumMat = [730730, 0.03, 1200 730100; 730731, 0.05, 1000 NaN]
	NumMat =
	1.0e+05 *
	7.3073 0.0000 0.0120 7.3010 7.3073 0.0000 0.0100 NaN
	datedisp(NumMat)
	01-Sep-2000 0.03 1200 11-Dec-1998 02-Sep-2000 0.05 1000 NaN

See Also datestr

Purpose	Indices of dat	te numbers in matrix
Syntax	Indices = da	atefind(Subset, Superset, Tolerance)
Arguments	n	Subset matrix of date numbers used to find matching date numbers in Superset. These date numbers must be a nonrepeating subset of those in Superset.
		Superset matrix of nonrepeating date numbers whose elements are sought.
		Optional) Tolerance (+/-) for matching the date numbers in Superset. A positive integer. Default = 0.
Description	indices to the	atefind(Subset, Superset, Tolerance) returns a vector of e date numbers in Superset that are present in Subset, plus or olerance. If no date numbers match, Indices = [].
	-	s function was designed for use with sequential date numbers, you th any nonrepeating integers.
Examples	Superset	= datenum(1999, 7, 1:31);
	Subset =	[datenum(1999, 7, 10); datenum(1999, 7, 20)];
	Indices =	= datefind(Subset, Superset, 1)
	Indices =	=
		9 10 11 19 20 21
See Also	datenum	

datemnth

Purpose	Date of day in	future or past month
Syntax	TargetDate = EndMonthRu	datemnth(StartDate, NumberMonths, DayFlag, Basis, ule)
Arguments	StartDate	Enter as serial date numbers or date strings.
	NumberMonths	Vector containing number of months in future (positive) or past (negative). Values must be in integer form.
	DayFlag	(Optional) Vector containing values that specify how the actual day number for the target date in future or past month is determined. 0 (default) = day number should be the day in the future or past month corresponding to the actual day number of the start date. 1 = day number should be the first day of the future or past month. 2 = day number should be the last day of the future or past month.
		This flag has no effect if EndMonthRule is set to 1.
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), 2 = actual/360, $3 = actual/365$, $4 = 30/360$ (PSA), 5 = 30/360 (ISDA), $6 = 30/360$ (European), 7 = actual/365 (Japanese).
	EndMonthRule	(Optional) End-of-month rule. A vector. 1 = rule in effect, meaning that if you are beginning on the last day of a month, and the month has 30 or fewer days, you will end on the last actual day of the future or past month regardless of whether that month has 28, 29, 30 or 31 days)
		0 = rule off (default), meaning that the rule is not in effect.
	Any input can	contain multiple values, but if so, all other inputs must contain

Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then NumberMonths must be an n-by-1 vector of integers or a single integer. TargetDate is then an n-by-1 vector of date numbers.

```
Description
                   TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis,
                   EndMonthRule) returns the serial date number of the target date in the future
                   or past.
                   Use datestr to convert serial date numbers to formatted date strings.
Examples
                      Day = datemnth('3 jun 2001', 6, 0, 0, 0)
                      Dav =
                            731188
                      datestr(Day)
                      ans =
                      03-Dec-2001
                      Day = datemnth('3 jun 2001', 6, 1, 0, 1); datestr(Day)
                      ans =
                      01-Dec-2001
                      Day = datemnth('31 jan 2001', 5, 0, 0, 0); datestr(Day)
                      ans =
                      30-Jun-2001
                      Day = datemnth('31 jan 2001', 5, 1, 0, 0); datestr(Day)
                      ans =
                      01-Jun-2001
                      Day = datemnth('31 jan 2001', 5, 1, 0, 1); datestr(Day)
                      ans =
                      30-Jun-2001
                      Day = datemnth('31 jan 2001', 5, 2, 0, 1); datestr(Day)
                      ans =
                      30-Jun-2001
                     Months = [1; 3; 5; 7; 9];
                      Day = datemnth('31 jan 2001', Months); datestr(Day)
                      ans =
                      28-Feb-2001
                      30-Apr-2001
                      30-Jun-2001
                      31 - Aug - 2001
```

datemnth

31-0ct-2001

See Also datestr, datevec, days360, days365, daysact, daysdif, wrkdydif

Purpose	Create date number
Syntax	DateNumber = datenum(DateString) DateNumber = datenum(DateString, Pivot) DateNumber = datenum(Year, Month, Day) DateNumber = datenum(Year, Month, Day, Hour, Minute, Second)
Description	DateNumber = datenum(DateString) returns a serial date number given a date string. Date numbers are the number of days that has passed since a base date. <i>In MATLAB, date number 1 is January 1, 0000 A.D.</i> If the input includes time components, the date number includes a fractional component. The date string can be any of several forms.
	'19-may-1999' 'may 19, 1999' '19-may-99' '19-may' (current year assumed) '5/19/99' '5/19' (current year assumed) '19-may-1999, 18:37' '19-may-1999, 6:37 pm' '5/19/99/18:37' '5/19/99/6:37 pm'

Certain formats may not contain enough information to compute a date number. In these cases, missing values default to 0 for hours, minutes, and seconds; January for the month; and 1 for the day of month. The year defaults to the current year. Unless you specify a pivot year, date strings with two-character years, e.g., 12-june-12, are assumed to lie within the 100-year period centered about the current year.

DateNumber = datenum(DateString, Pivot) assumes that two-character years lie within the 100-year period beginning with the pivot year. The default pivot year is the current year minus 50 years.

DateNumber = datenum(Year, Month, Day) returns a serial date number given year, month, and day integers.

datenum

	DateNumber = datenum(Year, Month, Day, Hour, Minute, Second) returns a serial date number given year, month, day, hour, minute, and second integers.
	Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.
Examples	DateNumber = datenum('19-may-1999') DateNumber = 730259
	DateNumber = datenum('5/19/99') DateNumber = 730259
	DateNumber = datenum('19-may-1999, 6:37 pm') DateNumber = 730259.78
	DateNumber = datenum('5/19/99/18:37') DateNumber = 730259.78
	DateNumber = datenum(1999, 5, 19) DateNumber = 730259
	DateNumber = datenum(1999, 1:6, 19) DateNumber = [730139 730170 730198 730229 730259 730290]
	DateNumber = datenum(1999, 5, 19, 18, 37, 0) DateNumber = 730259.78
	DateNumber = datenum(730259) DateNumber = 730259
	The next example demonstrates the use of the pivot year in interpreting date

The next example demonstrates the use of the pivot year in interpreting date strings with two-character years.

```
DateNumber = datenum('12-june-12 )
DateNumber =
735032
```

datenum

```
datestr(735032)
ans =
12-Jun-2012
DateNumber = datenum('12-june-12 ,1900)
DateNumber =
698507
datestr(698507)
ans =
12-Jun-1912
```

See Also datedisp, datestr, datevec, daysact, now, today

datestr

Purpose	Create date string
Syntax	DateString = datestr(Date, DateForm) DateString = datestr(Date, DateForm, Pivot) DateString = datestr(Date)
Description	<pre>DateString = datestr(Date, DateForm) converts a date number or a date string to a date string. DateForm specifies the format of DateString. Date strings with two-character years, e.g., 12-june-12, are assumed to lie within the 100-year period centered about the current year. DateString = datestr(Date, DateForm, Pivot) assumes that</pre>
	two-character years lie within the 100-year period beginning with the pivot year. The default pivot year is the current year minus 50 years. Note MATLAB internal date handling and calculations generate no

Note MATLAB internal date handling and calculations generate no ambiguous values. However, whenever possible, programmers should use date strings containing four-digit years or serial date numbers.

DateString = datestr(Date) assumes DateForm is 1, 16, or 0 depending on whether the date number Date contains a date, time, or both, respectively. If Date is a date string, the function assumes DateForm is 1.

DateForm	Format	Example
0	'dd-mmm-yyyy HH:MM:SS'	01-Mar-2000 15:45:17
1	'dd-mmm-yyyy'	01-Mar-2000
2	'mm/dd/yy'	03/01/00
3	'mmm'	Mar
4	'm'	М
5	'mm '	03
6	'mm/dd'	03/01

DateForm	Format	Example
7	' dd '	01
8	'ddd'	Wed
9	' d '	W
10	' уууу '	2000
11	' yy '	00
12	'mmmyy'	Mar00
13	'HH:MM:SS'	15:45:17
14	'HH:MM:SS PM'	3:45:17 PM
15	'HH:MM'	15:45
16	'HH:MM PM'	3:45 PM
17	' QQ - YY '	Q1 01
18	' QQ '	Q1
19	'dd/mm'	01/03
20	'dd/mm/yy'	01/03/00
21	'mmm.dd.yyyy HH:MM:SS'	Mar.01,2000 15:45:17
22	'mmm.dd.yyyy'	Mar.01.2000
23	'mm/dd/yyyy'	03/01/2000
24	'dd/mm/yyyy'	01/03/2000
25	'yy/mm/dd'	00/03/01
26	'yyyy/mm/dd'	2000/03/01
27	'QQ-YYYY	Q1-2001
28	'mmmyyyy'	Mar2000

datestr

Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.

Examples	DateString = datestr(730123, 1) DateString = 03-Jan-1999
	DateString = datestr(730123, 2) DateString = 01/03/99
	DateString = datestr(730123, 12) DateString = Jan99
	DateString = datestr(730123.776, 0) DateString = 03-Jan-1999 18:37:26
	DateString = datestr('1/03', 1) (assuming the current year is 1999) DateString = 03-Jan-1999
	DateString = datestr(730123) DateString = 03-Jan-1999
	DateString = datestr([730123 730154 730182 730213 730243 730274]) DateString = 03-Jan-1999 03-Feb-1999
	03-Mar-1999 03-Apr-1999 03-May-1999 03-Jun-1999
	DateString = datestr('1/03') DateString = 03-Jan-1999 (assuming the current year is 1999)
See Also	dateaxis, datedisp, datenum, datevec, daysact, now, today

Purpose	Date components		
Syntax	DateVector = datevec(Date) DateVector = datevec(Date, Pivot) [Year, Month, Day, Hour, Minute, Second] = datevec(Date)		
Description	DateVector = datevec(Date) converts a date number or a date string to a date vector whose elements are [Year Month Day Hour Minute Second]. The first five elements are integers, the sixth is a floating-point number. Date strings with two-character years, e.g., 12-june-12, are assumed to lie within the 100-year period centered about the current year.		
	DateVector = datevec(Date, Pivot) assumes that two-character years lie within the 100-year period beginning with the pivot year. The default pivot year is the current year minus 50 years.		
	Note MATLAB internal date handling and calculations generate no ambiguous values. However, whenever possible, programmers should use date strings containing four-digit years or serial date numbers.		
	[Year, Month, Day, Hour, Minute, Second] = datevec(Date) converts a date number or a date string to a date vector and returns the components of the date vector as individual variables.		
	Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.		
Examples	DateVec = datevec('28-Jul-00') DateVec = 2000 7 28 0 0 0		
	DateVec = datevec(730695) DateVec = 2000 7 28 0 0 0		

datevec

```
DateVec = datevec(730695.776)
  DateVec =
          2000 7
                         28
                               18
                                      37
                                             26.4
  [Year, Month, Day, Hour, Minute, Second] = datevec(730695.776)
  Year =
    2000
  Month =
       7
  Day =
      28
  Hour =
      18
  Minute =
      37
  Second =
      26.4
  [Year, Month, Day] = datevec(730695:730697)
  Year =
      2000
              2000
                      2000
  Month =
         7
               7
                         7
  Day =
        28
                29
                        30
datenum, datestr, now, today
```

See Also

Purpose	Date of future or past workday		
Syntax	EndDate = datew	EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays)	
Arguments	StartDate	Start date vector. Enter as serial date numbers or date strings.	
	NumberWorkDays	Vector containing number of work or business days in future (positive) or past (negative), including the starting date.	
	NumberHolidays	Vector containing values for the number of holidays within NumberWorkDays. NumberHolidays and NumberWorkDays must have the same sign.	
	the same number StartDate is an n	tain multiple values, but if so, all other inputs must contain of values or a single value that applies to all. For example, if -row character array of date strings, then NumberWorkDays - vector of integers or a single integer. EndDate is then an ate numbers.	
Description	EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays) returns the serial number of the date a given number of workdays before or after the start date.		
	Use datestr to co	nvert serial date numbers to formatted date strings.	
Examples	<pre>Workday = datewrkdy('12-dec-2000', 16, 2); datestr(Workday) ans = 04-Jan-2001 NumDays = [16; 20; 44]; Workdays = datewrkdy('12-dec-2000', NumDays, 2); datestr(Workdays) ans = 4-Jan-2001 10-Jan-2001 13-Feb-2001</pre>		
See Also	busdate, holiday	s, isbusday, wrkdydif	

day

Purpose	Day of month	
Syntax	DayMonth = day(Date)	
Description	DayMonth = day(Date) returns the day of the month given a serial date number or date string.	
Examples	DayMonth = day(730544)	
	or	
	DayMonth = day('2/28/00')	
	returns DayMonth = 28	
See Also	datevec, eomday, month, year	

Purpose	Days between dates based on 360-day year (SIA compliant)		
Syntax	NumDays = days360(StartDate, EndDate)		
Arguments	StartDateEnter as serial date numbers or date strings.EndDateEnter as serial date numbers or date strings.		
	Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an n-by-1 vector of integers or a single integer. NumDays is then an n-by-1 vector of date numbers.		
Description	NumDays = days360(StartDate, EndDate) returns the number of days between StartDate and EndDate based on a 360-day year (i.e., all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.		
Examples	NumDays = days360('15-jan-2000', '15-mar-2000')		
	NumDays =		
	60		
	MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000']; NumDays = days360('15-jan-2000', MoreDays) NumDays =		
	60 90 150		
See Also	days365, daysact, daysdif, wrkdydif, yearfrac		
References	Addendum to Securities Industry Association, Standard Securities Calculation Methods: Fixed Income Securities Formulas for Analytic Measures, Vol. 2, Spring 1995.		

days360e

Purpose	Days between dates based on a 360 day year (European)		
Syntax	NumDays = days360	NumDays = days360e(StartDate, EndDate)	
Arguments	StartDate	Row vector, column vector, or scalar value in serial date number or date string format.	
	EndDate	Row vector, column vector, or scalar value in serial date number or date string format.	
	Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all.		
Description	NumDays = days360e(StartDate, EndDate) returns a vector or scalar value representing the number of days between StartDate and EndDate based on a 360-day year (i.e., all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.		
	This day count conv all months contain	vention is used primarily in Europe. Under this convention 30 days.	
Examples	Example 1. Use this convention to find the number of days in the month of January.		
	StartDate = '1-Jan-2002'; EndDate = '1-Feb-2002'; NumDays = days360e(StartDate, EndDate)		
	NumDays =		
	30		
	Example 2. Use this a leap year.	s convention to find the number of days in February during	
	StartDate = '1 EndDate = '1-M NumDays = days		
	NumDays =		

30

Example 3. Use this convention to find the number of days in February of a non- leap year.

See Also

days360isda

Purpose	Days between dates based on a 360 day year (ISDA)		
Syntax	NumDays = days360	NumDays = days360isda(StartDate, EndDate)	
Arguments	StartDate	Row vector, column vector, or scalar value in serial date number or date string format.	
	EndDate	Row vector, column vector, or scalar value in serial date number or date string format.	
	_	ntain multiple values, but if so, the other must contain the lues or a single value that applies to all.	
Description	NumDays = days360isda(StartDate, EndDate) returns a vector or scalar value representing the number of days between StartDate and EndDate based on a 360-day year (i.e., all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.		
	Under this convent	ion all months contain 30 days.	
Examples	Example 1. Use this convention to find the number of days in the month of January.		
	StartDate = '1 EndDate = '1-F NumDays = days		
	NumDays =		
	30		
	Example 2. Use this a leap year.	s convention to find the number of days in February during	
	StartDate = '1 EndDate = '1-M NumDays = days		
	NumDays =		

30

Example 3. Use this convention to find the number of days in February of a non- leap year.

```
StartDate = '1-Feb-2002';
EndDate = '1-Mar-2002';
NumDays = days360isda(StartDate, EndDate)
NumDays =
30
days360, days360e, days360psa
```

See Also

days360psa

Purpose	Days between dates	s based on a 360 day year (PSA)
Syntax	NumDays = days360psa(StartDate, EndDate)	
Arguments	StartDate	Row vector, column vector, or scalar value in serial date number or date string format.
	EndDate	Row vector, column vector, or scalar value in serial date number or date string format.
	-	ntain multiple values, but if so, the other must contain the lues or a single value that applies to all.
Description	NumDays = days360psa(StartDate, EndDate) returns a vector or scalar value representing the number of days between StartDate and EndDate based on a 360-day year (i.e., all months contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.	
		t convention all months contain 30 days. In both leap and ne StartDate is the last day of February, this day is y 30 of the month.
Examples	-	s convention to find the number of days in between the last d the first day of March during a leap year.
	StartDate = '2 EndDate = '1-M NumDays = days	
	NumDays =	
	1	
	-	s convention to find the number of days in between the last d the first day of March during a non-leap year.
	StartDate = '2	8-Feb-2002';

EndDate = '1-Mar-2002';

NumDays = days360psa(StartDate, EndDate)

 NumDays =

 1

 As expected, the number of days in both cases is the same. The convention always assumes that the last day of February is the 30th day.

 See Also
 days360, days360e, days360isda

days365

Purpose	Days between dates based on 365-day year		
Syntax	NumDays = days365(StartDate, EndDate)		
Arguments	StartDateEnter as serial date numbers or date strings.EndDateEnter as serial date numbers or date strings.		
	Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an n-by-1 vector of integers or a single integer. NumDays is then an n-by-1 vector of date numbers.		
Description	NumDays = days365(StartDate, EndDate) returns the number of days between dates StartDate and EndDate based on a 365-day year. (All months contain their actual number of days. February always contains 28 days.) If EndDate is earlier than StartDate, NumDays is negative. Enter dates as serial date numbers or date strings.		
Examples	NumDays = days365('15-jan-2000', '15-mar-2000') NumDays =		
	59		
	MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];		
	NumDays = days365('15-jan-2000', MoreDays)		
	NumDays =		
	59 90 151		
See Also	days360, daysact, daysdif, wrkdydif, yearfrac		

Purpose	Actual number of days between dates		
Syntax	NumDays = daysact(StartDate, EndDate)		
Arguments	StartDateEnter as serial date numbers or date strings.EndDate(Optional) Enter as serial date numbers or date strings.Either input can contain multiple values, but if so, the other must contain the same number of values or a single value that applies to all. For example, if		
	StartDate is an n-row character array of date strings, then EndDate must be an n-row character array of date strings or a single date. NumDays is then an n-by-1 vector of numbers.		
Description	NumDays = daysact(StartDate, EndDate) returns the actual number of day between two dates. Enter dates as serial date numbers or date strings. NumDays is negative if EndDate is earlier than StartDate.		
	NumDays = daysact(StartDate) returns the actual number of days between the MATLAB base date and StartDate. In MATLAB, the base date 1 is 1-Jan-0000 A.D. See datenum for a similar function.		
Examples	NumDays = daysact('7-sep-2002', '25-dec-2002') NumDays = 109		
	NumDays = daysact('9/7/2002') NumDays = 731466		
	MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002']; NumDays = daysact(MoreDays, '12/25/2002') NumDays = 109 64 50		
See Also	datenum, datevec, days360, days365, daysdif		

daysadd

Purpose	Date away from a starting date for any day-count basis		
Syntax	NumDays = daysadd(StartDate, NumDays, Basis)		
Arguments	StartDateStart date. Enter as serial date numbers or date stringNumDaysInteger number of days from start date. Enter a negative		
	Wallbayo	Integer number of days from start date. Enter a negative integer for dates before start date.	
		5 = 30/360 (ISDA), $6 = 30/360$ (European),	
	Note When using the 30/360 day-count basis, it is not always possible to find the exact date NumDays number of days away because of a known discontinuity in the method of counting days. A warning is displayed if this occurs.		
Description	-	aysadd(StartDate, NumDays, Basis) returns a date NumDays ys away from StartDate, using the given day-count basis.	
Examples	NewDate = daysadd('01-Feb-2004', 31)		
	NewDate =		
	732	2009	
	datestr(N	lewDate)	
	ans =		
	03-Mar-20	004	

	NewDate = daysadd('01-Feb-2004', 31, 1)		
	NewDate =		
	732008		
	datestr(NewDate)		
	ans =		
	02-Mar-2004		
See Also	daysdif		
References	Stigum, Marcia L. and Franklin Robinson, <i>Money Market and Bond Calculations</i> , Richard D. Irwin, 1996, ISBN 1-55623-476-7		

daysdif

Purpose	Days between dates for any day-count basis				
Syntax	NumDays = daysdif(StartDate, EndDate, Basis)				
Arguments	must contain	Enter as serial date numbers or date strings. Enter as serial date numbers or date strings. (Optional) Day-count basis of the instrument. A vector of integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 = actual/365 (Japanese). gument can contain multiple values, but if so, the other inputs the same number of values or a single value that applies to all. if StartDate is an n-row character array of date strings, then			
Description	 EndDate must be an n-row character array of date strings or a single date. NumDays is then an n-by-1 vector of numbers. NumDays = daysdif(StartDate, EndDate, Basis) returns the number of days between dates StartDate and EndDate using the given day-count basis. Enter dates as serial date numbers or date strings. This function is a helper function for the bond pricing and yield functions. It is designed to make the code more readable and to eliminate redundant calls within if statements. 				
Examples	<pre>NumDays = daysdif('3/1/99', '3/1/00', 1) NumDays =</pre>				
See Also	datenum, days	s360, days365, daysact, daysadd, wrkdydif, yearfrac			

References Stigum, Marcia L. and Franklin Robinson, *Money Market and Bond Calculations*, Richard D. Irwin, 1996, ISBN 1-55623-476-7

dec2thirtytwo

Purpose	Decimal to thirty-second quotation			
Syntax	[OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy)			
Arguments	InNumberInput number as a decimal fraction.Accuracy(Optional) Rounding. Default = 1, round down to nearest thirty second. Other values are 2 (nearest half), 4 (nearest quarter) and 10 (nearest decile).			
Description	<pre>[OutNumber, Fractions] = dec2thirtytwo(InNumber, Accuracy) changes a decimal price quotation for a bond or bond future to a fraction with a denominator of 32. OutNumber is InNumber rounded downward to the closest integer. Fractions is the fractional part in units of thirty-second with accuracy as prescribed by the input Accuracy.</pre>			
Examples	Two bonds are quoted with decimal prices of 101.78 and 102.96. Convert these prices to fractions with a denominator of 32. InNumber = [101.78; 102.96]; [OutNumber, Fractions] = dec2thirtytwo(InNumber) OutNumber = 101 102 Fractions = 25 31			
See Also	thirtytwo2dec			

Purpose	Fixed declining-balance depreciation schedule					
Syntax	Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)					
Arguments	Cost	Initial va	lue of the asse	et.		
	Salvage	Salvage	value of the as	set.		
	Life	Life of th	e asset in year	·s.		
	Period	Number	of years to cal	culate.		
	Month	(Optiona Default =	l) Number of n = 12.	nonths in the f	first year of as	set life.
Description	Depreciation = depfixdb(Cost, Salvage, Life, Period, Month) calculates the fixed declining-balance depreciation for each period.					
Examples	A car is purchased for \$11,000 with a salvage value of \$1500 and a lifetime of eight years. To calculate the depreciation for the first five years					
	<pre>Depreciation = depfixdb(11000, 1500, 8, 5)</pre>					
	returns					
	Depreciat 24	tion = 425.08	1890.44	1473.67	1148.78	895.52
See Also	depgendb, de	prdv, deps	oyd,depstln			

depgendb

Purpose	General declining-balance depreciation schedule					
Syntax	Depreciatio	Depreciation = depgendb(Cost, Salvage, Life, Factor)				
Arguments	Cost Salvage Life		he asset. ed salvage valu of periods over			atad
	Factor	Deprecia	tion factor. Fac eclining-balance	ctor = 2 uses t	-	allea.
Description	Depreciation = depgendb(Cost, Salvage, Life, Factor) calculates the declining-balance depreciation for each period.					
Examples	A car is purchased for \$11,000 and is to be depreciated over five years. The estimated salvage value is \$1000. Using the double-declining-balance method, the function calculates the depreciation for each year and returns the remaining depreciable value at the end of the life of the car. Depreciation = depgendb(11000, 1000, 5, 2)					
	returns Depreciation =					
	•	400.00	2640.00	1584.00	950.40	425.60
See Also	depfixdb,de	prdv, deps	oyd,depstln			

deprdv

Purpose	Remaining depreciable value					
Syntax	Value = deprdv(Cost, Salvage, Accum)					
Arguments	Cost Salvage Accum	Cost of the asset. Salvage value of the asset. Accumulated depreciation of the asset for prior periods.				
Description	Value = deprdv(Cost, Salvage, Accum) returns the remaining depreciable value for an asset.					
Examples	The cost of an asset is \$13,000 with a life of 10 years. The salvage value is \$1000. First find the accumulated depreciation with the straight-line depreciation function, depstln. Then find the remaining depreciable value after six years.					
	Accum = depstln(13000, 1000, 10) * 6					
	Accum = 7200.00					
	Value = deprdv(13000, 1000, 7200) Value = 4800.00					
See Also	depfixdb, depgendb, depsoyd, depstln					

depsoyd

Purpose	Sum of years' digits depreciation					
Syntax	Sum = depsoyd(Cost, Salvage, Life)					
Arguments	Cost Cost of the asset.					
	Salvage	Salvage value of the asset.				
	Life	Depreciable life of the asset in years.				
Description	<pre>Sum = depsoyd(Cost, Salvage, Life) calculates the depreciation for an asset using the sum of years' digits method. Sum is a 1-by-Life vector of depreciation values with each element corresponding to a year of the asset's life.</pre>					
Examples	The cost of an asset is \$13,000 with a life of 10 years. The salvage value of the asset is \$1000.					
	Sum = dep	osoyd(13000, 1000, 10)'				
	returns					
	Sum =					
	2181.82					
	1963.64					
	1745.45 1527.27					
	1309.09					
	1090.91					
	872.73					
	654.55					
	436.36					
	218.18					
See Also	depfixdb, depgendb, deprdv, depstln					

depstln

Purpose	Straight-line depreciation schedule	
Syntax	Depreciation	n = depstln(Cost, Salvage, Life)
Arguments	Cost	Cost of the asset.
	Salvage	Salvage value of the asset.
	Life	Depreciable life of the asset in years.
Description	Depreciation depreciation	n = depstln(Cost, Salvage, Life) calculates straight-line for an asset.
Examples	The cost of an asset is \$13,000 with a life of 10 years. The salvage value of the asset is \$1000. Depreciation = depstln(13000, 1000, 10)	
	returns	
	Depreciat	ion =
		1200
See Also	depfixdb, de	pgendb, deprdv, depsoyd

disc2zero

Purpose	Zero curve given a	discou	nt curve
Syntax	[ZeroRates, Curve Compounding, B		<pre>s] = disc2zero(DiscRates, CurveDates, Settle,</pre>
Arguments	DiscRates	aggr curv	umn vector of discount factors, as decimal fractions. In regate, the factors in DiscRates constitute a discount e for the investment horizon represented by reDates.
	CurveDates		umn vector of maturity dates (as serial date numbers) correspond to the discount factors in DiscRates.
	Settle		al date number that is the common settlement date for discount rates in DiscRates.
	Compounding	com	ional) Output compounding. A scalar that sets the pounding frequency per year for annualizing the ut zero rates. Allowed values are:
		1	annual compounding
		2	semiannual compounding (default)
		3	compounding three times per year
		4	quarterly compounding
		6	bimonthly compounding
		12	monthly compounding
		365	daily compounding
		-1	continuous compounding
	Basis	rate 2 = a 5 = 3	ional) Day-count basis for annualizing the output zero s. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), actual/360, $3 = \text{actual}/365$, $4 = 30/360$ (PSA), 30/360 (ISDA), $6 = 30/360$ (European), actual/365 (Japanese).
Description	[ZeroRates, Curve	eDates	s] = disc2zero(DiscRates, CurveDates, Settle,

Description [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle, Compounding, Basis) returns a zero curve given a discount curve and its maturity dates.

ZeroRates Column vector of decimal fractions. In aggregate, the rates in ZeroRates constitute a zero curve for the investment horizon represented by CurveDates. The zero rates are the yields to maturity on theoretical zero-coupon bonds. CurveDates Column vector of maturity dates (as serial date numbers) that correspond to the zero rates. This vector is the same as the input vector CurveDates. **Examples** Given discount factors DiscRates over a set of maturity dates CurveDates, and a settlement date Settle DiscRates = [0.9996]0.9947 0.9896 0.9866 0.9826 0.9786 0.9745 0.9665 0.9552 0.9466];CurveDates = [datenum('06-Nov-2000') datenum('11-Dec-2000') datenum('15-Jan-2001') datenum('05-Feb-2001') datenum('04-Mar-2001') datenum('02-Apr-2001') datenum('30-Apr-2001') datenum('25-Jun-2001') datenum('04-Sep-2001') datenum('12-Nov-2001')]; Settle = datenum('03-Nov-2000'); Set daily compounding for the output zero curve, on an actual/365 basis.

> Compounding = 365; Basis = 3;

disc2zero

Execute the function

```
[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,...
Settle, Compounding, Basis)
```

which returns the zero curve ZeroRates at the maturity dates CurveDates.

ZeroRates = 0.0487 0.0510 0.0523 0.0524 0.0530 0.0526 0.0530 0.0532 0.0549 0.0536 CurveDates = 730796 730831 730866 730887 730914 730943 730971 731027 731098 731167

For readability, DiscRates and ZeroRates are shown here only to the basis point. However, MATLAB computed them at full precision. If you enter DiscRates as shown, ZeroRates may differ due to rounding.

See Also zero2disc and other functions for Term Structure of Interest Rates

Purpose	Bank discount rate of a money market security		
Syntax	DiscRate =	= discrate(Settle, Maturity, Face, Price, Basis)	
Arguments	Settle	Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.	
	Maturity	Enter as serial date number or date string.	
	Face	Redemption (par, face) value.	
	Price	Price of the security.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).	
Description	DiscRate = discrate(Settle, Maturity, Face, Price, Basis) finds the bank discount rate of a security. The bank discount rate normalizes by the face value of the security (e.g., U. S. Treasury Bills) and understates the true yield earned by investors.		
Examples	DiscRat	e = discrate('12-jan-2000', '25-jun-2000', 100, 97.74, 0)	
	returns		
	DiscRat	e =	
	0.0		
	a discount :	rate of 5.01%.	
See Also	acrudisc,	fvdisc, prdisc, ylddisc	
References	Mayle, <i>Stat</i> Formula 1.	Mayle, <i>Standard Securities Calculation Methods</i> , Volumes I-II, 3rd edition. Formula 1.	

ecmnfish

Purpose	Fisher information matrix		
Syntax	Fisher = ecmnf	ish(Data, Covariance, InvCovariance, MatrixFormat)	
Arguments	Data	NUMSAMPLES-by-NUMSERIES matrix of observed multivariate normal data	
	Covariance	NUMSERIES-by-NUMSERIES matrix with covariance estimate of Data	
	InvCovariance	(Optional) Inverse of covariance matrix: inv(Covariance)	
	MatrixFormat	(Optional) String that identifies parameters included in the Fisher information matrix. If MatrixFormat = [] or '', the default method full is used. The parameter choices are	
		• full — (Default) Compute full Fisher information matrix.	
		• meanonly — Compute only components of the Fisher information matrix associated with the mean.	
Description	computes a NUMP	ish(Data, Covariance, InvCovariance, MatrixFormat) ARAMS-by-NUMPARAMS Fisher information matrix based on er estimates, where	
	NUMPARAMS =	NUMSERIES*(NUMSERIES + 3)/2	
	if MatrixFormat	= 'full' and	
	NUMPARAMS =	NUMSERIES	
	if MatrixFormat	= 'meanonly'.	
	This routine is v	ery slow for NUMSERIES > 10 or NUMSAMPLES > 1000.	
	The data matrix model has	has NaNs for missing observations. The multivariate normal	
	NUMPARAMS =	NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2	
	NUMPARAMS-by-NU	ers. Therefore, the full Fisher information matrix is of size MPARAMS. The first NUMSERIES parameters are estimates for data in Mean, and the remaining	

```
NUMSERIES*(NUMSERIES + 1)/2 parameters are estimates for the lower-triangular portion of the covariance of the data in Covariance, in row-major order.
```

If MatrixFormat = 'meanonly', the number of parameters is reduced to NUMPARAMS = NUMSERIES, where the Fisher information matrix is computed for the mean parameters only. In this format, the routine executes fastest.

This routine expects the inverse of the covariance matrix as an input. If you do not pass in the inverse, the routine computes it. You can obtain an approximation for the lower-bound standard errors of estimation of the parameters from

```
Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Fisher)));
```

Because of missing information, these standard errors may be smaller than the estimated standard errors derived from the expected Hessian matrix. To see the difference, compare with standard errors calculated with ecmnhess.

See Also ecmnhess, ecmnmle

ecmnhess

Purpose	Hessian of negative log-likelihood function		
Syntax	Hessian = ecmn	hess(Data, Covariance, InvCovariance, MatrixFormat)	
Arguments	Data	NUMSAMPLES-by-NUMSERIES matrix of observed multivariate normal data	
	Covariance	NUMSERIES-by-NUMSERIES matrix with covariance estimate of Data	
	InvCovariance	(Optional) Inverse of covariance matrix: inv(Covariance)	
	MatrixFormat	(Optional) String that identifies parameters included in the Hessian matrix. If MatrixFormat = [] or '', the default method full is used. The parameter choices are	
		• full — (Default) Compute full Hessian matrix.	
		• meanonly — Compute only components of the Hessian matrix associated with the mean.	
Description	Hessian = ecmnhess(Data, Covariance, InvCovariance, MatrixFormat) computes a NUMPARAMS -by-NUMPARAMS Hessian matrix of the observed negative log-likelihood function based upon current parameter estimates, where		
	NUMPARAMS = NUMSERIES*(NUMSERIES + 3)/2		
	if MatrixFormat = 'full' and		
	NUMPARAMS = NUMSERIES		
	ifMatrixFormat = 'meanonly'.		
	This routine is v	ery slow for NUMSERIES > 10 or NUMSAMPLES > 1000.	
	The data matrix model has	has NaNs for missing observations. The multivariate normal	
	NUMPARAMS =	NUMSERIES + NUMSERIES*(NUMSERIES + 1)/2	
	distinct paramet matrix.	ters. Therefore, the full Hessian is a NUMPARAMS-by-NUMPARAMS	
		IES parameters are estimates for the mean of the data in Mean ng NUMSERIES*(NUMSERIES + 1)/2 parameters are estimates	

for the lower-triangular portion of the covariance of the data in Covariance, in row-major order.

If MatrixFormat = 'meanonly', the number of parameters is reduced to NUMPARAMS = NUMSERIES, where the Hessian is computed for the mean parameters only. In this format, the routine executes fastest.

This routine expects the inverse of the covariance matrix as an input. If you do not pass in the inverse, the routine computes it.

The equation

```
Stderr = (1.0/sqrt(NumSamples)) .* sqrt(diag(inv(Hessian)));
```

provides an approximation for the observed standard errors of estimation of the parameters.

Because of the additional uncertainties introduced by missing information, these standard errors may be larger than the estimated standard errors derived from the Fisher information matrix. To see the difference, compare with standard errors calculated from ecmnfish.

See Also ecmnfish, ecmnmle

ecmninit

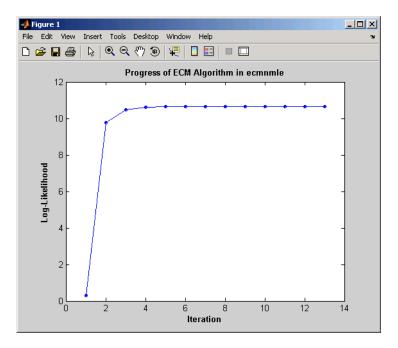
Purpose	Initial mean and	d covariance
Syntax	[Mean, Covaria	ance] = ecmninit(Data, InitMethod)
Arguments	Data	NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-dimensional random vector. Missing values are indicated by NaNs.
	InitMethod	(Optional) String that identifies one of three defined initialization methods to compute initial estimates for the mean and covariance of the data. If InitMethod = [] or '', the default method nanskip is used. The initialization methods are
		 nanskip — (Default) Skip all records with NaNs. twostage — Estimate mean. Fill NaNs with the mean. Then estimate the covariance.
		• diagonal — Form a diagonal covariance.
Description	and covariance of column vector estimates and covariance of the column vector estimates and the covariance of the covari	ance] = ecmninit(Data, InitMethod) creates initial mean estimates for the function ecmnmle. Mean is a NUMSERIES-by-1 stimate for the mean of Data. Covariance is a JMSERIES matrix estimate for the covariance of Data.
Algorithm	Model The general mod	del is
	$Z \sim N(Mean,$	Covariance)
	where each row	of Data is an observation of Z .
		n of Z is assumed to be iid (independent identically distributed) rmal, and missing values are assumed to be missing at random
		ethods s three initialization methods that cover most cases, each with and disadvantages.

nanskip. The nanskip method works well with small problems (fewer than 10 series or with monotone missing data patterns). It skips over any records with NaNs and estimates initial values from complete-data records only. This initialization method tends to yield fastest convergence of the ECM algorithm. This routine switches to the twostage method if it determines that significant numbers of records contain NaN.

twostage. The twostage method is the best choice for large problems (more than 10 series). It estimates the mean for each series using all available data for each series. It then estimates the covariance matrix with missing values treated as equal to the mean rather than as NaNs. This initialization method is quite robust but tends to result in slower convergence of the ECM algorithm.

diagonal. The diagonal method is a worst-case approach that deals with problematic data, such as disjoint series and excessive missing data (more than 33% missing data). Of the three initialization methods, this method causes the slowest convergence of the ECM algorithm.

See Also ecmnmle


ecmnmle

Purpose	Mean and covari	iance of incomplete multivariate normal data
Syntax		nce] = ecmnmle(Data, InitMethod, MaxIterations, MeanO, CovarO)
Arguments	Data	NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-dimensional random vector. Missing values are indicated by NaNs. A sample is also called an <i>observation</i> or a <i>record</i> .
	InitMethod	(Optional) String that identifies one of three defined initialization methods to compute initial estimates for the mean and covariance of the data. If InitMethod = [] or '', the default method nanskip is used. The initialization methods are
		• nanskip — (Default) Skip all records with NaNs.
		• twostage — Estimate mean. Fill NaNs with mean. Then estimate covariance.
		• diagonal — Form a diagonal covariance.
		Note If you supply MeanO and CovarO, InitMethod is not executed.
	MaxIterations	(Optional) Maximum number of iterations for the expectation conditional maximization (ECM) algorithm. Default = 50.
	Tolerance	(Optional) Convergence tolerance for the ECM algorithm (Default = 1.0e-8.) If Tolerance \leq 0, perform maximum iterations specified by MaxIterations and do not evaluate the objective function at each step unless in display mode, as described below.

	Mean0	(Optional) Initial NUMSERIES-by-1 column vector estimate for the mean. If you leave MeanO unspecified ([]), the method specified by InitMethod is used. If you specify MeanO, you must also specify CovarO.
	Covar0	(Optional) Initial NUMSERIES-by-NUMSERIES matrix estimate for the covariance, where the input matrix must be positive-definite. If you leave CovarO unspecified ([]), the method specified by InitMethod is used. If you specify CovarO, you must also specify MeanO.
Description	Tolerance, Me If the data set h of Meng and Ru stands for <i>expec</i> form of the EM	ance] = ecmnmle(Data, InitMethod, MaxIterations, an0, Covar0) estimates the mean and covariance of a data set. has missing values, this routine implements the ECM algorithm ubin [2] with enhancements by Sexton and Swensen [3]. ECM ctation conditional maximization, a conditional maximization algorithm of Dempster, Laird, and Rubin [4].
	the ECM algori	Yith no output arguments, this mode displays the convergence of ithm. It estimates and plots objective function values for each ECM algorithm until termination, as shown in the following

plot.

ecmnmle

Display mode can determine MaxIter and Tolerance values or serve as a diagnostic tool. The objective function is the negative log-likelihood function of the observed data and convergence to a maximum likelihood estimate corresponds with minimization of the objective.

Estimation Mode. With output arguments, this mode estimates the mean and covariance via the ECM algorithm.

Examples To see an example of how to use ecmnmle, run the demo program ecmguidemo.

Model

The general model is

 $Z \sim N(Mean, Covariance)$

where each row of Data is an observation of Z.

Algorithm

Each observation of Z is assumed to be iid (independent identically distributed) multivariate normal, and missing values are assumed to be missing at random (MAR). See Little and Rubin [1] for a precise definition of MAR.

This routine estimates the mean and covariance from given data. If data values are missing, the routine implements the ECM algorithm of Meng and Rubin [2] with enhancements by Sexton and Swensen [3].

If a record is empty (every value in a sample is NaN), this routine ignores the record because it contributes no information. If such records exist in the data, the number of nonempty samples used in the estimation is \leq NumSamples.

The estimate for the covariance is a biased maximum likelihood estimate (MLE). To convert to an unbiased estimate, multiply the covariance by Count/Count-1), where Count is the number of nonempty samples used in the estimation.

Requirements

This routine requires consistent values for NUMSAMPLES and NUMSERIES with NUMSAMPLES > NUMSERIES. It must have enough nonmissing values to converge. Finally, it must have a positive-definite covariance matrix. Although the references provide some necessary and sufficient conditions, general conditions for existence and uniqueness of solutions in the missing-data case do not exist. The main failure mode is an ill-conditioned covariance matrix estimate. Nonetheless, this routine works for most cases that have less than 15% missing data (a typical upper bound for financial data).

Initialization Methods

This routine has three initialization methods that cover most cases, each with its advantages and disadvantages. The ECM algorithm always converges to a minimum of the observed negative log-likelihood function. If you override the initialization methods, you must ensure that the initial estimate for the covariance matrix is positive-definite.

The following is a guide to the supported initialization methods.

nanskip. The nanskip method works well with small problems (fewer than 10 series or with monotone missing data patterns). It skips over any records with NaNs and estimates initial values from complete-data records only. This initialization method tends to yield fastest convergence of the

ECM algorithm. This routine switches to the twostage method if it determines that significant numbers of records contain NaN.

twostage. The twostage method is the best choice for large problems (more than 10 series). It estimates the mean for each series using all available data for each series. It then estimates the covariance matrix with missing values treated as equal to the mean rather than as NaNs. This initialization method is quite robust but tends to result in slower convergence of the ECM algorithm.

diagonal. The diagonal method is a worst-case approach that deals with problematic data, such as disjoint series and excessive missing data (more than 33% of data missing). Of the three initialization methods, this method causes the slowest convergence of the ECM algorithm. If problems occur with this method, use display mode to examine convergence and modify either MaxIterations or Tolerance, or try alternative initial estimates with MeanO and CovarO. If all else fails, try

```
MeanO = zeros(NumSeries);
CovarO = eye(NumSeries,NumSeries);
```

Given estimates for mean and covariance from this routine, you can estimate standard errors with the companion routine ecmnstd.

Convergence

The ECM algorithm does not work for all patterns of missing values. Although it works in most cases, it can fail to converge if the covariance becomes singular. If this occurs, plots of the log-likelihood function tend to have a constant upward slope over many iterations as the log of the negative determinant of the covariance goes to zero. In some cases, the objective fails to converge due to machine precision errors. No general theory of missing data patterns exists to determine these cases. An example of a known failure occurs when two time series are proportional wherever both series contain nonmissing values.

See Also ecmnfish, ecmnhess, ecmninit, ecmnobj, ecmnstd

References [1] Little, Roderick J. A. and Donald B. Rubin, *Statistical Analysis with Missing Data*, 2nd ed., John Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li and Donald B. Rubin, "Maximum Likelihood Estimation via the ECM Algorithm," *Biometrika*, Vol. 80, No. 2, 1993, pp. 267-278.

[3] Sexton, Joe and Anders Rygh Swensen, "ECM Algorithms that Converge at the Rate of EM," *Biometrika*, Vol. 87, No. 3, 2000, pp. 651-662.

[4] Dempster, A. P., N. M. Laird, and Donald B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," *Journal of the Royal Statistical Society*, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

ecmnobj

Purpose	Multivariate normal negative log-likelihood function	
Syntax	Objective = ec	mnobj(Data, Mean, Covariance, CholCovariance)
Arguments	Data	NUMSAMPLES-by-NUMSERIES matrix of observed multivariate normal data
	Mean	NUMSERIES-by-1 column vector with mean estimate of Data
	Covariance	NUMSERIES-by-NUMSERIES matrix with covariance estimate of Data
	CholCovariance	(Optional) Cholesky decomposition of covariance matrix: chol(Covariance)
Description	computes the va	mnobj(Data, Mean, Covariance, CholCovariance) lue of the observed negative log-likelihood function over the nt estimates for the mean and covariance of the data.
		has NaNs for missing observations. The inputs Mean and current estimates for model parameters.
	-	ects the Cholesky decomposition of the covariance matrix as an ne computes the Cholesky decomposition if you do not explicitly
See Also	chol, ecmnmle	

ecmnstd

Purpose	Standard errors for mean and covariance of incomplete data	
Syntax	[StdMean, Std0	Covariance] = ecmnstd(Data, Mean, Covariance, Method)
Arguments	Data	NUMSAMPLES-by-NUMSERIES matrix with NUMSAMPLES samples of a NUMSERIES-dimensional random vector. Missing values are indicated by NaNs.
	Mean	NUMSERIES-by-1 column vector of maximum-likelihood parameter estimates for the mean of Data using the expectation conditional maximization (ECM) algorithm
	Covariance	NUMSERIES-by-NUMSERIES matrix of maximum-likelihood covariance estimates for the covariance of Data using the ECM algorithm
	Method	(Optional) String indicating method of estimation for standard error calculations. The methods are
		• hessian — (Default) Hessian of the observed negative log-likelihood function.
		• fisher — Fisher information matrix.
Description		Covariance] = ecmnstd(Data, Mean, Covariance, Method) ard errors for mean and covariance of incomplete data.
		SERIES-by-1 column vector of standard errors of estimates for the mean vector Mean.
		is a NUMSERIES-by-NUMSERIES matrix of standard errors of ch element of the covariance matrix Covariance.
	ecmnmle. If the parameter θ in	e after estimating the mean and covariance of Data with mean and distinct covariance elements are treated as the a complete-data maximum-likelihood estimation, then as the oles increases, θ attains asymptotic normality such that
	$\theta - E[\theta] \sim N(\theta)$	$0, I^{-1}(\theta))$
	where $E[\theta]$ is t	he mean and $I(\theta)$ is the Fisher information matrix.

With missing data, the Hessian $H(\theta)$ is a good approximation for the Fisher information (which can only be approximated when data is missing).

It is usually advisable to use the default Method since the resultant standard errors incorporate the increased uncertainty due to missing data. In particular, standard errors calculated with the Hessian are generally larger than standard errors calculated with the Fisher information matrix.

Note This routine is very slow for NUMSERIES > 10 or NUMSAMPLES > 1000.

See Also

ecmnmle

Purpose	Effective rate of return	
Syntax	Return = effrr(Rate, NumPeriods)	
Arguments	RateAnnual percentage rate. Enter as a decimal fraction.NumPeriodsNumber of compounding periods per year, an integer.	
Description	Return = effrr(Rate, NumPeriods) calculates the annual effective rate of return. Compounding continuously returns Return equivalent to (e^Rate-1).	
Examples	Find the effective annual rate of return based on an annual percentage rate of 9% compounded monthly.	
	Return = effrr(0.09, 12)	
	returns	
	Return =	
	0.0938 or 9.38%	
See Also	nomrr	

eomdate

Purpose	Last date of month
Syntax	DayMonth = eomdate(Year, Month)
Description	DayMonth = eomdate(Year, Month) returns the serial date number of the last date of the month for the given year and month. Enter Year as a four-digit integer; enter Month as an integer from 1 to 12.
	Either input argument can contain multiple values, but if so, the other input must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. DayMonth is then a 1-by-n vector of date numbers.
	Use the function datestr to convert serial date numbers to formatted date strings.
Examples	<pre>DayMonth = eomdate(2001, 2) DayMonth =</pre>
	datestr(DayMonth)
	ans = 28-Feb-2002 28-Feb-2003 29-Feb-2004 28-Feb-2005
See Also	day, eomday, lbusdate, month, year

eomday

Purpose	Last day of month		
Syntax	Day = eomday(Year, Month)		
Description	Day = eomday(Year, Month) returns the last day of the month for the given year and month. Enter Year as a four-digit integer; enter Month as an integer from 1 to 12.		
	Either input argument can contain multiple values, but if so, the other input must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Day is then a 1-by-n vector of days.		
	Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.		
Examples	Day = $eomday(2000, 2)$ Day =		
	29		
See Also	day, eomdate, month		

ewstats

Purpose	Expected return and covariance from return time series		
Syntax	[ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries, DecayFactor, WindowLength)		
Arguments	RetSeries	Return Series: number of observations (NUMOBS) by number of assets (NASSETS) matrix of equally spaced incremental return observations. The first row is the oldest observation, and the last row is the most recent.	
	DecayFactor	(Optional) Controls how much less each observation is weighted than its successor. The <i>k</i> th observation back in time has weight DecayFactor^k. DecayFactor must lie in the range: 0 < DecayFactor <= 1.	
		Default = 1, the equally weighted linear moving average model (BIS).	
	WindowLength	(Optional) Number of recent observations in the computation. Default = NUMOBS.	
Description	<pre>[ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries, DecayFactor, WindowLength) computes estimated expected returns, estimated covariance matrix, and the number of effective observations.</pre>		
	ExpReturn is a 1-by-NASSETS vector of estimated expected returns.		
	ExpCovariance is an NASSETS-by-NASSETS estimated covariance matrix. The standard deviations of the asset return processes are given by		
	STDVec	= sqrt(diag(ExpCovariance))	
	The correlation matrix is		
	CorrMat	t = ExpCovariance./(STDVec*STDVec')	
	<pre>NumEffObs is the number of effective observations = (1-DecayFactor^WindowLength)/(1-DecayFactor). A smaller DecayFactor or WindowLength emphasizes recent data more strongly but uses less of the available data set.</pre>		

Examples RetSeries = [0.24 0.08 0.15 0.13 0.27 0.06 0.14 0.13]; DecayFactor = 0.98;[ExpReturn, ExpCovariance] = ewstats(RetSeries, DecayFactor) ExpReturn = 0.1995 0.1002 ExpCovariance = 0.0032 -0.0017 -0.0017 0.0010 See Also cov, mean

fbusdate

Purpose	First business date of month		
Syntax	Date = fbusdate(Year, Month, Holiday, Weekend)		
Arguments	Year Enter as four-digit integer.		
	Month	Enter as integer from 1 to 12.	
	Holiday	(Optional) Vector of holidays and nontrading-day dates. All dates in Holiday must be the same format: either serial date numbers or date strings. (Using date numbers improves performance.) The holidays function supplies the default vector.	
	Weekend	(Optional) Vector of length 7, containing 0 and 1, the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday form the weekend (default), then Weekend = [1 0 0 0 0 0 1].	
Description	Date = fbusdate(Year, Month, Holiday, Weekend) returns the serial date number for the first business date of the given year and month. Holiday specifies nontrading days.		
	Year and Month can contain multiple values. If one contains multiple values the other must contain the same number of values or a single value that appli to all. For example, if Year is a 1-by-n vector of integers, then Month must be 1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of da numbers.		
	Use the function datestr to convert serial date numbers to formatted dat strings.		
Examples	<pre>Example 1: Date = fbusdate(2001, 11); datestr(Date) ans = 01-Nov-2001</pre>		
		= [2002 2003 2004]; = fbusdate(Year, 11); datestr(Date)	
	ans =		

fbusdate

01 - Nov - 2002 03 - Nov - 2003 01 - Nov - 2004

Example 2: You can indicate that Saturday is a business day by appropriately setting the Weekend argument.

Weekend = $[1 \ 0 \ 0 \ 0 \ 0 \ 0];$

March 1, 2003, is a Saturday. Use fbusdate to check that this Saturday is actually the first business day of the month.

Date = datestr(fbusdate(2003, 3, [], Weekend)) Date = 01-Mar-2003

See Also busdate, eomdate, holidays, isbusday, lbusdate

frac2cur

Purpose	Fractional currency value to decimal value		
Syntax	Decimal = frac2cur(Fraction, Denominator)		
Description	Decimal = frac2cur(Fraction, Denominator) converts a fractional currency value to a decimal value. Fraction is the fractional currency value input as a string, and Denominator is the denominator of the fraction.		
Examples	Decimal = frac2cur('12.1', 8) returns Decimal = 12.1250		
See Also	cur2frac, cur2str		

Purpose	Mean-variance efficient frontier		
Syntax	[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups, GroupBounds)		
Arguments	ExpReturn	1 by number of assets (NASSETS) vector specifying the expected (mean) return of each asset.	
	ExpCovariance	NASSETS-by-NASSETS matrix specifying the covariance of asset returns.	
	NumPorts	(Optional) Number of portfolios generated along the efficient frontier. Returns are equally spaced between the maximum possible return and the minimum risk point. If NumPorts is empty (entered as [], frontcon computes 10 equally spaced points. When entering a target rate of return (PortReturn), enter NumPorts as an empty matrix [].	
	PortReturn	(Optional) Vector of length equal to the number of portfolios (NPORTS) containing the target return values on the frontier. If PortReturn is not entered or [], NumPorts equally spaced returns between the minimum and maximum possible values are used.	
	AssetBounds	(Optional) 2-by-NASSETS matrix containing the lower and upper bounds on the weight allocated to each asset in the portfolio. Default lower bound = all 0s (no short-selling). Default upper bound = all 1s (any asset may constitute the entire portfolio).	

	Groups	(Optional) Number of groups (NGROUPS)-by-NASSETS matrix specifying NGROUPS asset groups or classes. Each row specifies a group. Groups(i,j) = 1 (<i>j</i> th asset belongs in the ith group). Groups(i,j) = 0 (<i>j</i> th asset not a member of the <i>i</i> th group).	
	GroupBounds	(Optional) NGROUPS-by-2 matrix specifying, for each group, the lower and upper bounds of the total weights of all assets in that group. Default lower bound = all 0s. Default upper bound = all 1s.	
Description	[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups, GroupBounds) returns the mean-variance efficient frontier with user-specified asset constraints, covariance, and returns. For a collection of NASSETS risky assets, computes a portfolio of asset investment weights that minimize the risk for given values of the expected return. The portfolio risk is minimized subject to constraints on the asset weights or on groups of asset weights.		
	PortRisk is an NPORTS-by-1 vector of the standard deviation of each port PortReturn is a NPORTS-by-1 vector of the expected return of each portfo		
	PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset Each row represents a portfolio. The total of all weights in a portfolio is 1.		
	frontcon generates output arguments.	a plot of the efficient frontier if you invoke it without	
	returns of ExpRetur portfolio with 1-by-M PortVar = PortWts	re assumed to be jointly normal, with expected mean n and return covariance ExpCovariance. The variance of a MASSETS weights PortWts is given by *ExpCovariance*PortWts'. The portfolio expected return t(ExpReturn, PortWts).	

```
Examples
                   Given three assets with expected returns of
                      ExpReturn = [0.1 \ 0.2 \ 0.15];
                   and expected covariance of
                      ExpCovariance = [ 0.0100
                                                   -0.0061
                                                               0.0042
                                        -0.0061
                                                    0.0400
                                                              -0.0252
                                         0.0042
                                                   -0.0252
                                                               0.0225];
                   compute the mean-variance efficient frontier for four points.
                      NumPorts = 4;
                      [PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
                      ExpCovariance, NumPorts)
                      PortRisk =
                          0.0426
                          0.0483
                          0.1089
                          0.2000
                      PortReturn =
                          0.1569
                          0.1713
                          0.1856
                          0.2000
                      PortWts =
                          0.2134
                                     0.3518
                                                0.4348
                          0.0096
                                     0.4352
                                                0.5552
                               0
                                     0.7128
                                                0.2872
                               0
                                     1.0000
                                                     0
See Also
                   ewstats, portopt, portstats
```

fvdisc

Purpose	Future value of discounted security		
Syntax	FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)		
Arguments	Settle	Settlement date. Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.	
	Maturity	Maturity date. Enter as serial date number or date string.	
	Price	Price (present value) of the security.	
	Discount	Bank discount rate of the security. Enter as decimal fraction.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).	
Description	FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis) finds the amount received at maturity for a fully vested security.		
Examples	Using this data		
	Settle = '02/15/2001'; Maturity = '05/15/2001'; Price = 100; Discount = 0.0575; Basis = 2;		
	FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)		
	returns		
	FutureV	al = 101.44	
See Also	acrudisc,	discrate, prdisc, ylddisc	
References	Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.		

Purpose	Future value with fixed periodic payments			
Syntax	FutureVal =	FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due)		
Arguments	Rate NumPeriods Payment PresentVal Due	Periodic payment.		
Description	FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due) returns the future value of a series of equal payments.			
Examples	A savings account has a starting balance of \$1500. \$200 is added at the end of each month for 10 years and the account pays 9% interest compounded monthly. Using this data FutureVal = fvfix(0.09/12, 12*10, 200, 1500, 0) returns FutureVal =			
		42379.89		
See Also	fvvar,pvfi	x, pvvar		

fvvar

Purpose	Future value of varying cash flow		
Syntax	FutureVal = fvvar(CashFlow, Rate, IrrCFDates)		
Arguments	CashFlow A vector of varying cash flows. Include the initial investment a the initial cash flow value (a negative number).		
	Rate	Periodic interest rate. Enter as a decimal fraction.	
	IrrCFDates	(Optional) For irregular (nonperiodic) cash flows, a vector of dates on which the cash flows occur. Enter dates as serial date numbers or date strings. Default assumes CashFlow contains regular (periodic) cash flows.	
Description	FutureVal = fvvar(CashFlow, Rate, IrrCFDates) returns the future value of a varying cash flow.		
Examples	This cash flow represents the yearly income from an initial investment of \$10,000. The annual interest rate is 8%.		
	Year 1 \$2000		
	Year 2	\$1500	
	Year 3	\$3000	
	Year 4	\$3800	
	Year 5 \$5000 For the future value of this regular (periodic) cash flow FutureVal = fvvar([-10000 2000 1500 3000 3800 5000], 0.08) returns		
	FutureVa	1 =	
		2520.47	

An investment of \$10,000 returns this irregular cash flow. The original investment and its date are included. The periodic interest rate is 9%.

Cash flow	Dates
(\$10000)	January 12, 2000
\$2500	February 14, 2001
\$2000	March 3, 2001
\$3000	June 14, 2001
\$4000	December 1, 2001

To calculate the future value of this irregular (nonperiodic) cash flow

```
CashFlow = [-10000, 2500, 2000, 3000, 4000];

IrrCFDates = ['01/12/2000'
'02/14/2001'
'03/03/2001'
'06/14/2001'
'12/01/2001'];

FutureVal = fvvar(CashFlow, 0.09, IrrCFDates)

returns

FutureVal =

170.66
```

See Also fvfix, irr, payuni, pvfix, pvvar

fwd2zero

Purpose	Zero curve given a forward curve		
Syntax	[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates, Settle, Compounding, Basis)		
Arguments	ForwardRates	A number of bonds (NUMBONDS) by 1 vector of annualized implied forward rates, as decimal fractions. In aggregate, the rates in ForwardRates constitute an implied forward curve for the investment horizon represented by CurveDates. The first element pertains to forward rates from the settlement date to the first curve date.	
	CurveDates	A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the forward rates.	
	Settle	A serial date number that is the common settlement date for the forward rates.	
	Compounding	(Optional) Output compounding. A scalar that sets the compounding frequency per year for annualizing the output zero rates. Allowed values are:	
		1 annual compounding	
		2 semiannual compounding (default)	
		3 compounding three times per year	
		4 quarterly compounding	
		6 bimonthly compounding	
		12 monthly compounding	
		365 daily compounding	
		-1 continuous compounding	
	Basis	(Optional) Output day-count basis for annualizing the output zero rates. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).	

Description[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,
Settle, Compounding, Basis) returns a zero curve given an implied forward
rate curve and its maturity dates.
ZeroRatesZeroRatesA NUMBONDS-by-1 vector of decimal fractions. In aggregate, the

rates in ZeroRates constitute a zero curve for the investment horizon represented by CurveDates. CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the zero rates in ZeroRates. This

vector is the same as the input vector CurveDates.

Examples Given an implied forward rate curve over a set of maturity dates, a settlement date, and a compounding rate, compute the zero curve.

ForwardRates = [0.0469]0.0519 0.0549 0.0535 0.0558 0.0508 0.0560 0.0545 0.0615 0.0486];CurveDates = [datenum('06-Nov-2000') datenum('11-Dec-2000') datenum('15-Jan-2001') datenum('05-Feb-2001') datenum('04-Mar-2001') datenum('02-Apr-2001') datenum('30-Apr-2001') datenum('25-Jun-2001') datenum('04-Sep-2001') datenum('12-Nov-2001')]; Settle = datenum('03-Nov-2000'); Compounding = 1;

Execute the function

fwd2zero

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,... Settle, Compounding)

which returns the zero curve ZeroRates at the maturity dates CurveDates.

ZeroRates =

- 0.0469 0.0515 0.0531 0.0532 0.0538 0.0532 0.0536 0.0539 0.0556 0.0543 CurveDates = 730796 730831 730866 730887 730914 730943 730971 731027 731098
 - 731167

For readability, ForwardRates and ZeroRates are shown here only to the basis point. However, MATLAB computed them at full precision. If you enter ForwardRates as shown, ZeroRates may differ due to rounding.

See Also zero2fwd and other functions for Term Structure of Interest Rates

Purpose	High, low, open, close chart	
Syntax		h, Low, Close, Open, Color) ighlow(High, Low, Close, Open, Color)
Arguments	High Low Close Open Color	 High prices for a security. A column vector. Low prices for a security. A column vector. Closing prices for a security. A column vector. (Optional) Opening prices for a security. A column vector. To specify Color when Open is unknown, enter Open as an empty matrix []. (Optional) Vertical line color. A string. MATLAB supplies a default color if none is specified. The default color differs depending on the background color of the figure window. See
Description	ColorSpec in the MATLAB documentation for color names. highlow(High, Low, Close, Open, Color) plots the high, low, opening, and closing prices of an asset. Plots are vertical lines whose top is the high, bottom is the low, open is a short horizontal tick to the left, and close is a short horizontal tick to the right. Handles = highlow(High, Low, Close, Open, Color) plots the figure and returns the handles of the lines.	
Examples	<pre>returns the handles of the lines. The high, low, and closing prices for an asset are stored in equal-length vectors AssetHi, AssetLo, and AssetCl respectively highlow(AssetHi, AssetLo, AssetCl, [], 'cyan') plots the price data using cyan lines.</pre>	
See Also	bolling, can	dle, dateaxis, movavg, pointfig

holidays

Purpose	Holidays and nontrading days		
Syntax	Holidays = holidays(StartDate, EndDate)		
Arguments	StartDateStart date vector. Enter as serial date numbers or date strings.EndDateEnd date vector. Enter as serial date numbers or date strings.		
Description	Holidays = holidays(StartDate, EndDate) returns a vector of serial date numbers corresponding to the holidays and nontrading days between StartDate and EndDate, inclusive.		
	Holidays = holidays returns a vector of serial date numbers corresponding to all holidays and nontrading days.		
	As shipped, this function contains all holidays and special nontrading days for the New York Stock Exchange between 1950 and 2050. You can edit the holidays.m file to contain your own holidays and nontrading days. By definition, holidays and nontrading days are those that occur on weekdays.		
Examples	Holidays = holidays('jan 1 2001', 'jun 23 2001') returns Holidays =		
	730852 730901 730954 730999		
	which are the serial date numbers for		
	01-Jan-2001 (New Year's Day) 19-Feb-2001 (President's Day) 13-Apr-2001 (Good Friday) 28-May-2001 (Memorial Day)		
See Also	busdate, fbusdate, isbusday, lbusdate		

hour

Purpose	Hour of date or time
Syntax	Hour = hour(Date)
Description	Hour = hour(Date) returns the hour of the day given a serial date number or a date string.
Examples	Hour = hour(730473.5584278936)
	or
	Hour = hour('19-dec-1999, 13:24:08.17')
	returns
	Hour = 13
See Also	datevec, minute, second

Purpose	Internal rate of return		
Syntax	Return = irr(CashFlow)		
Description	Return = irr(CashFlow) calculates the internal rate of return for a series of periodic cash flows. CashFlow is the cash flow vector. The first entry in CashFlow is the initial investment. If the initial investment is negative, irr generates a unique result only if all subsequent cash flows are positive. If some future cash flows are negative, irr generates nonunique solutions (multiple solutions that are each valid).		
	If the cash flow payments are monthly, multiply the resulting rate of return by 12 for the annual rate of return. This function calculates only positive rates of return; for nonpositive rates of return, Return = NaN.		
Examples	This cash flow represents the yearly income from an initial investment of \$100,000:		
	Year 1 \$10,000		
	Year 2 \$20,000		
	Year 3 \$30,000		
	Year 4 \$40,000		
	Year 5 \$50,000		
	To calculate the internal rate of return on the investment Return = irr([-100000 10000 20000 30000 40000 50000])		
	returns		
	Return =		
	0.1201 (12.01%)		
See Also	effrr, mirr, nomrr, taxedrr, xirr		
References	Brealey and Myers, Principles of Corporate Finance, Chapter 5		

Purpose	True for dates that are business days		
Syntax	Busday = isbusday(Date, Holiday, Weekend)		
Arguments	Date Date(s) being checked. Enter as a serial date number or date string. Date can contain multiple dates, but they must all be in t same format.		
	Holiday (Optional) Vector of holidays and nontrading-day dates. All da in Holiday must be the same format: either serial date number date strings. (Using date numbers improves performance.) The holidays function supplies the default vector.	rs or	
	Veekend (Optional) Vector of length 7, containing 0 and 1, the value 1 indicating weekend days. The first element of this vector corresponds to Sunday. Thus, when Saturday and Sunday forn weekend (default), then Weekend = [1 0 0 0 0 0 1].	1 the	
Description	Busday = isbusday(Date, Holiday, Weekend) returns $logical true(1)$ if Date is a business day and logical false (0) otherwise.		
Examples	Example 1:		
	Busday = isbusday('16 jun 2001')		
	Busday =		
	0		
	Date = ['15 feb 2001'; '16 feb 2001'; '17 feb 2001'];		
	Busday = isbusday(Date)		
	Busday =		
	1 1 0		

isbusday

Example 2: Set June 21, 2003 (a Saturday) as a business day. Weekend = [1 0 0 0 0 0 0]; isbusday('June 21, 2003', [], Weekend) ans = 1

See Also busdate, fbusdate, holidays, lbusdate

lbusdate

Purpose	Last business date of month		
Syntax	Date = lbusdate(Year, Month, Holiday, Weekend)		
Arguments	Year Enter as four-digit integer.		
	Month Enter as integ	ger from 1 to 12.	
	in Holiday m date strings. (etor of holidays and nontrading-day dates. All dates ast be the same format: either serial date numbers or Using date numbers improves performance.) The etion supplies the default vector.	
	indicating we corresponds to	ctor of length 7, containing 0 and 1, the value 1 ekend days. The first element of this vector o Sunday. Thus, when Saturday and Sunday form the nult), then Weekend = [1 0 0 0 0 0 1].	
Description	Date = lbusdate(Year, Month, Holiday, Weekend) returns the serial date number for the last business date of the given year and month. Holiday specifies nontrading days.		
	Year and Month can contain multiple values. If one contains multiple values, the other must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date numbers.		
	Use the function datestr to convert serial date numbers to formatted date strings.		
Examples	Example 1.		
	Date = lbusdate(2001, 5)		
	Date =		
	731002		
	datestr(Date)		

Ibusdate

```
ans =

31-May-2001

c

ans =

31-May-2001

31-May-2002

30-May-2003
```

Example 2: You can indicate that Saturday is a business day by appropriately setting the Weekend argument.

Weekend = $[1 \ 0 \ 0 \ 0 \ 0 \ 0];$

May 31, 2003, is a Saturday. Use lbusdate to check that this Saturday is actually the last business day of the month.

```
Date = datestr(lbusdate(2003, 5, [], Weekend))
Date =
31-May-2003
busdate, eomdate, fbusdate, holidays, isbusday
```

See Also

Purpose	Date of last occurrence of weekday in month		
Syntax	LastDate = lweekdate(Weekday, Year, Month, NextDay)		
Arguments	Weekday Weekday whose date you seek. Enter as an integer from 1 through 7:		
		1 Sunday	
		2 Monday	
		3 Tuesday	
		4 Wednesday	
		5 Thursday	
		6 Friday	
		7 Saturday	
	Year	Year. Enter as a four-digit integer.	
	Month	Month. Enter as an integer from 1 through 12.	
	NextDay	(Optional) Weekday that must occur after Weekday in the same week. Enter as an integer from 0 through 7, where $0 = ignore$ (default) and 1 through 7 are as for Weekday.	
	Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. LastDate is then a 1-by-n vector of date numbers.		
Description	LastDate = lweekdate(Weekday, Year, Month, NextDay) returns the serial date number for the last occurrence of Weekday in the given year and month and in a week that also contains NextDay.		
	Use the fun strings.	nction datestr to convert serial date numbers to formatted date	

lweekdate

Examples	To find the last Monday in June 2001 LastDate = lweekdate(2, 2001, 6); datestr(LastDate) ans =		
	25-Jun-2001 To find the last Monday in a week that also contains a Friday in June 2001 LastDate = lweekdate(2, 2001, 6, 6); datestr(LastDate)		
	ans = 25-Jun-2001		
	To find the last Monday in May for 2001, 2002, and 2003 Year = [2001:2003]; LastDate = lweekdate(2, Year, 5)		
	LastDate = 730999 731363 731727 datestr(LastDate)		
	ans = 28-May-2001 27-May-2002		
See Also	26-May-2003 eomdate, lbusdate, nweekdate		

Purpose	MATLAB serial date number to Excel serial date number				
Syntax	<pre>DateNum = m2xdate(MATLABDateNumber, Convention)</pre>				
Arguments	MATLABDateNumber A vector or scalar of MATLAB serial date numbers.				
	Convention	Convention = (O (default),th Convention	A vector or scalar. When the Excel 1900 date system is = 1, the Excel 1904 date	
		number 1 corre	sponds to Jar	m, the Excel serial date nuary 1, 1900 A.D. In the e number 0 is January 1,	
	Vector arguments n	nust have consist	ent dimensio	ns.	
Description	DateNum = $m2xdate(MATLABDateNumber, Convention)$ converts MATLAB serial date numbers to Excel serial date numbers. MATLAB date numbers start with 1 = January 1, 0000 A.D., hence there is a difference of 693961 relative to the 1900 date system, or 695422 relative to the 1904 date system. This function is useful with MATLAB Excel Link.				
Examples	Given MATLAB da	te numbers for C	hristmas 200	1 through 2004	
	DateNum = datenum(2001:2004, 12, 25)				
	DateNum =				
	731210	731575	731940	732306	
	convert them to Excel date numbers in the 1904 system				
	ExDate = m2xda	te(DateNum, 1)			
	ExDate =				
	35788	36153	36518	36884	
	or the 1900 system				

m2xdate

	<pre>ExDate = m2xdate(DateNum)</pre>				
	ExDate =				
		37250	37615	37980	38346
See Also	datenum, datestr, x2mdate				

minute

Purpose	Minute of date or time			
Syntax	Minute = minute(Date)			
Description	Minute = minute(Date) returns the minute given a serial date number or a date string.			
Examples	Minute = minute(731204.5591223380)			
	or			
	Minute = minute('19-dec-2001, 13:25:08.17')			
	returns			
	Minute =			
	25			
See Also	datevec, hour, second			

mirr

Purpose	Modified internal rate of return		
Syntax	Return = mirr(CashFlow, FinRate, Reinvest)		
Arguments	CashFlow FinRate	Vector of cash flows. The first entry is the initial investment. Finance rate for negative cash flow values. Enter as decimal	
	Reinvest	fraction. Reinvestment rate for positive cash flow values, as a decimal	
		fraction.	
Description	Return = mirr(CashFlow, FinRate, Reinvest) calculates the modified internal rate of return for a series of periodic cash flows. This function calculates only positive rates of return; for nonpositive rates of return, Return = 0.		
Examples	This cash flow represents the yearly income from an initial investment of \$100,000. The finance rate is 9% and the reinvestment rate is 12%.		
	Year 1	\$20,000	
	Year 2	(\$10,000)	
	Year 3	\$30,000	
	Year 4	\$38,000	
	Year 5	\$50,000	
	To calculate the modified internal rate of return on the investment		
	Return = mirr([-100000 20000 -10000 30000 38000 50000], 0.09, 0.12)		
	returns		
	Return =	0.0832 (8.32%)	
See Also	annurate, effrr, irr, nomrr, pvvar, xirr		

References Brealey and Myers, *Principles of Corporate Finance*, Chapter 5

month

Purpose	Month of date		
Syntax	[MonthNum, MonthString] = month(Date)		
Description	[MonthNum, MonthString] = month(Date) returns the month in numeric and string form given a serial date number or a date string.		
Examples	[MonthNum, MonthString] = month(730368)		
	or		
	[MonthNum, MonthString] = month('05-Sep-1999')		
	returns		
	MonthNum =		
	9		
	MonthString =		
	Sep		
See Also	datevec, day, year		

Purpose	Number of whole months between dates		
Syntax	Months = months(StartDate, EndDate, EndMonthFlag)		
Arguments	StartDateEnter as serial date numbers or date strings.EndDateEnter as serial date numbers or date strings.EndMonthFlag(Optional) end-of-month flag. If StartDate and EndDate are end-of-month dates and EndDate has fewer days than StartDate, EndMonthFlag = 1 (default) treats EndDate as the end of a whole month, while EndMonthFlag = 0 does not.		
Description	 Months = months(StartDate, EndDate, EndMonthFlag) returns the number of whole months between StartDate and EndDate. If EndDate is earlier than StartDate, Months is negative. Enter dates as serial date numbers or date strings. Any input argument can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, if StartDate is an n-row character array of date strings, then EndDate must be an n-row character array of date strings or a single date. Months is then an n-by-1 vector of numbers. 		
Examples	<pre>Months = months('may 31 2000', 'jun 30 2000', 1) Months =</pre>		
See Also	yearfrac		

movavg

Purpose	Leading and	Leading and lagging moving averages chart	
Syntax		t, Lead, Lag, Alpha) g] = movavg(Asset, Lead, Lag, Alpha)	
Arguments	Asset	Security data, usually a vector of time-series prices.	
	Lead	Number of samples to use in leading average calculation. A positive integer. Lead must be less than or equal to Lag.	
	Lag	Number of samples to use in the lagging average calculation. A positive integer.	
	Alpha	(Optional) Control parameter that determines the type of moving averages. 0 = simple moving average (default), 0.5 = square root weighted moving average, 1 = linear moving average, 2 = square weighted moving average, etc. To calculate the exponential moving average, set Alpha ='e'.	
Description	movavg(Asse averages.	t, Lead, lag, Alpha) plots leading and lagging moving	
		g] = movavg(Asset, Lead, lag, Alpha) returns the leading gging Long moving average data without plotting it.	
Examples	If Asset is a	vector of stock price data	
	movavg(As	sset, 3, 20, 1)	
	plots linear t	hree-sample leading and 20-sample lagging moving averages.	
See Also	bolling, can	dle, dateaxis, highlow, pointfig	

Purpose	Nominal rate of return		
Syntax	Return = nomrr(Rate, NumPeriods)		
Arguments	RateEffective annual percentage rate. Enter as a decimal fraction.NumPeriodsNumber of compounding periods per year, an integer.		
Description	Return = nomrr(Rate, NumPeriods) calculates the nominal rate of return.		
Examples	To find the nominal annual rate of return based on an effective annual percentage rate of 9.38% compounded monthly Return = nomrr(0.0938, 12)		
	returns		
	Return = 0.0900 (9.0%)		
See Also	effrr, irr, mirr, taxedrr, xirr		

now

Purpose	Current date and time		
Syntax	Datenum = now		
Description	Datenum = now returns the current date and time as a serial date number.		
	Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.		
Examples	Datenum = now		
	Datenum =		
	730695.5942469908 (on July 28, 2000 at 2:15 PM)		
See Also	date, datenum, today		

Purpose	Date of specific occurrence of weekday in month			
Syntax	Date = r	Date = nweekdate(n, Weekday, Year, Month, Same)		
Arguments	n Nth occurrence of the weekday in a month. Enter as integer from 1 through 5.			
	Weekday	Weekday whose date you seek. Enter as integer from 1 through 7.		
		1 Sunday		
		2 Monday		
		3 Tuesday		
		4 Wednesday		
		5 Thursday		
		6 Friday		
		7 Saturday		
	Year	Year. Enter as a four-digit integer.		
	Month	Month. Enter as an integer from 1 through 12.		
	Same	(Optional) Weekday that must occur in the same week with Weekday. Enter as an integer from 0 through 7, where $0 = ignore$ (default) and 1 through 7 are as for Weekday.		
Description	number f	nweekdate(n, Weekday, Year, Month, Same) returns the serial date for the specific occurrence of the weekday in the given year and month, week that also contains the weekday Same.		
	If n is larger than the last occurrence of Weekday, Date $=$ 0.			
	Any input can contain multiple values, but if so, all other inputs must contain the same number of values or a single value that applies to all. For example, in Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date numbers.			
	Use the f strings.	function datestr to convert serial date numbers to formatted date		

nweekdate

Examples	To find the first Thursday in May 2001				
-	Date = nweekdate(1, 5, 2001, 5); datestr(Date)				
	ans =				
	03-May-2001				
	To find the first Thursday in a week that also contains a Wednesday in May 2001				
	Date = nweekdate(2, 5, 2001, 5, 4); datestr(Date)				
	ans =				
	10-May-2001				
	To find the third Monday in February for 2001, 2002, and 2003				
	Year = [2001:2003];				
	Date = nweekdate(3, 2, Year, 2)				
	Date = 730901 731265 731629				
	datestr(Date)				
	ans =				
	19-Feb-2001 18-Feb-2002 17-Feb-2003				
See Also	fbusdate, lbusdate, lweekdate				

Purpose	Option profit		
Syntax	Profit = op	Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)	
Arguments	AssetPrice Strike Cost PosFlag OptType	Asset price. Strike or exercise price. Cost of the option. Option position. 0 = long, 1 = short. Option type. 0 = call option, 1 = put option.	
Description		profit(AssetPrice, Strike, Cost, PosFlag, OptType) rofit of an option.	
Examples	asset with a of Profit = returns Profit =	<pre>g long on) a call option with a strike price of \$90 on an underlying current price of \$100 for a cost of \$4 opprofit(100, 90, 4, 0, 0) 6.00 if the option is exercised under these conditions.</pre>	
See Also	binprice, bl	sprice	

payadv

Purpose	Periodic payment given number of advance payments	
Syntax	Payment = pa Advance)	yadv(Rate, NumPeriods, PresentValue, FutureValue,
Arguments	Rate	Lending or borrowing rate per period. Enter as a decimal fraction. Must be greater than or equal to 0.
	NumPeriods	Number of periods in the life of the instrument.
	PresentValue	Present value of the instrument.
	FutureValue	Future value or target value to be attained after NumPeriods periods.
	Advance	Number of advance payments. If the payments are made at the beginning of the period, add 1 to Advance.
Description		yadv(Rate, NumPeriods, PresentValue, FutureValue, ırns the periodic payment given a number of advance payments.
Examples	-	alue of a loan is \$1000.00 and it will be paid in full in 12 months. terest rate is 10% and three payments are made at closing time. a
	Payment =	payadv(0.1/12, 12, 1000, 0, 3)
	returns	
	Payment =	
		85.94
	for the periodi	c payment.
See Also	amortize, pay	odd, payper

Purpose	Payment of loan or annuity with odd first period		
Syntax	Payment = pa	yodd(Rate, NumPeriods, PresentValue, FutureValue, Days)	
Arguments	rate NumPeriods PresentValue FutureValue Days	Interest rate per period. Enter as a decimal fraction. Number of periods in the life of the instrument. Present value of the instrument. Future value or target value to be attained after NumPeriods periods. Actual number of days until the first payment is made.	
Description		yodd(Rate, NumPeriods, PresentValue, FutureValue, Days) ayment for a loan or annuity with an odd first period.	
Examples	payment will Payment = returns Payment =	an for \$4000 has an annual interest rate of 11%. The first be made in 36 days. To find the monthly payment payodd(0.11/12, 24, 4000, 0, 36) 186.77	
See Also	amortize, pay	adv, payper	

payper

Purpose	Periodic paym	nent of loan or annuity
Syntax	Payment = pa	ayper(Rate, NumPeriods, PresentValue, FutureValue, Due)
Arguments		<pre>Interest rate per period. Enter as a decimal fraction. Number of payment periods in the life of the instrument. Present value of the instrument. (Optional) Future value or target value to be attained after NumPeriods periods. Default = 0. (Optional) When payments are due: 0 = end of period (default), or 1 = beginning of period.</pre>
Description	• •	ayper(Rate, NumPeriods, PresentValue, FutureValue, Due) eriodic payment of a loan or annuity.
Examples	interest rate o Payment = returns Payment =	payper(0.1175/12, 36, 9000, 0, 0)
		297.86
See Also	amortize fyf	ix, payadv, payodd, pvfix

Purpose	Uniform payment equal to varying cash flow		
Syntax	Series = payuni(CashFlow, Rate)		
Arguments	CashFlow A vector of varying cash flows. Include the initial investment as the initial cash flow value (a negative number).		
	Rate Periodic interest rate. Enter as a decimal fraction.		
Description	Series = payuni(CashFlow, Rate) returns the uniform series value of a varying cash flow.		
Examples	This cash flow represents the yearly income from an initial investment of \$10,000. The annual interest rate is 8%.		
	Year 1 \$2000		
	Year 2 \$1500		
	Year 3 \$3000		
	Year 4 \$3800		
	Year 5 \$5000		
	To calculate the uniform series value		
	Series = payuni([-10000 2000 1500 3000 3800 5000], 0.08)		
	returns		
	Series =		
	429.63		
See Also	fvfix, fvvar, irr, pvfix, pvvar		

pcalims

Purpose	Linear inequalities for individual asset allocation				
Syntax	[A,b] = pcalims(AssetMin, AssetMax, NumAssets)				
Arguments	AssetMin Scalar or NASSETS vector of minimum allocations in each asset. NaN indicates no constraint.				
	AssetMax	Scalar or NASSETS vector of maximum allocations in each asset. NaN indicates no constraint.			
	NumAssets	Assets (Optional) Number of assets. Default = length of AssetMin AssetMax.			
Description	<pre>[A,b] = pcalims(AssetMin, AssetMax, NumAssets) specifies the lower and upper bounds of portfolio allocations in each of NumAssets available asset investments.</pre>				
	A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 1-by-NASSETS vector of asset allocations.				
	If pcalims is called with fewer than two output arguments, the function returns A concatenated with b [A,b].				
Examples	Set the minimum weight in every asset to 0 (no short-selling), and set the maximum weight of IBM to 0.5 and CSCO to 0.8, while letting the maximum weight in INTC float.				
	Asset	IBM	INTC	CSCO	
	Min. Wt.	0	0	0	
	Max. Wt.	0.5		0.8	

```
AssetMin = 0
AssetMax = [0.5 \text{ NaN } 0.8]
[A,b] = pcalims(AssetMin, AssetMax)
A =
                    0
      1
             0
            0
     0
                    1
     - 1
            0
                    0
     0
            - 1
                    0
     0
            0
                   - 1
b =
    0.5000
     0.8000
          0
          0
          0
```

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

Set the minimum weight in every asset to 0 and the maximum weight to 1.

Asset	IBM	INTC	CSCO
Min. Wt.	0	0	0
Max. Wt.	1	1	1
AssetMin = 0 AssetMax = 1 NumAssets = 3			

pcalims

```
[A,b] = pcalims(AssetMin, AssetMax, NumAssets)
A =
     1
                  0
            0
     0
            1
                  0
     0
            0
                  1
    - 1
            0
                  0
     0
                  0
           - 1
     0
            0
                 - 1
b =
    1
    1
    1
    0
    0
    0
```

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

See Also pcgcomp, pcglims, pcpval, portcons, portopt

Purpose	Linear inequalities for asset group comparison constraints				
Syntax	[A,b] = pcg	[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)			
Arguments	GroupA GroupB	pB specifications of groups to compare. Each row specifies a group. For a specific group, Group(i,j) = 1 if the group contains asset j; otherwise, Group(i,j) = 0. min Scalar or NGROUPS-long vectors of minimum and maximum			
Description					
	ratio of allocations in one group to allocations in another group is at least AtoBmin to 1 and at most AtoBmax to 1. Comparisons can be made between an arbitrary number of group pairs NGROUPS comprising subsets of NASSETS available investments.			ean be made between an	
A is a matrix and b a vector such that A*PortWts' <= b, where 1-by-NASSETS vector of asset allocations.				b, where PortWts is a	
	If pcgcomp is called with fewer than two output arguments, the function returns A concatenated with b [A,b].				
Examples					
	Asset	INTC	XOM	RD	
	Region	North America	North America	Europe	

Technology

Energy

Energy

Sector

pcgcomp

Group	Min. Exposure	Max. Exposure
North America	0.30	0.75
Europe	0.10	0.55
Technology	0.20	0.50
Energy	0.20	0.80

Make the North American energy sector compose exactly 20% of the North American investment.

% INTC XOM RD 0]; % North American Energy GroupA = [0 1 GroupB = [1 1 0]; % North America AtoBmin = 0.20;AtoBmax = 0.20;[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB) A = 0.2000 -0.8000 0 0.8000 -0.2000 0 b = 0 0 Portfolio weights of 40% for INTC, 10% for XOM, and 50% for RD satisfy the

constraints.

See Also pcalims, pcglims, pcpval, portcons, portopt

Purpose	Linear inequalities for asset group minimum and maximum allocation			
Syntax	[A,b] = pc	<pre>[A,b] = pcglims(Groups, GroupMin, GroupMax)</pre>		
Arguments	Groups	Number of groups (NGROUPS) by number of assets (NASSETS) specification of which assets belong to which group. Each row specifies a group. For a specific group, Group(i,j) = 1 if the group contains asset j; otherwise, Group(i,j) = 0.		
	GroupMin GroupMax	Scalar or NGROUPS-long vectors of minimum and maximum combined allocations in each group. NaN indicates no constraint. Scalar bounds are applied to all groups.		
Description	<pre>[A,b] = pcglims(Groups, GroupMin, GroupMax) specifies minimum and maximum allocations to groups of assets. An arbitrary number of groups, NGROUPS, comprising subsets of NASSETS investments, is allowed.</pre>			
	A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a 1-by-NASSETS vector of asset allocations.			
	If pcglims is called with fewer than two output arguments, the functive returns A concatenated with b [A,b].			

Examples

Asset	INTC	XOM	RD
Region	North America	North America	Europe
Sector	Technology	Energy	Energy

Group	Min. Exposure	Max. Exposure
North America	0.30	0.75
Europe	0.10	0.55
Technology	0.20	0.50
Energy	0.50	0.50

Set the minimum and maximum investment in various groups.

% INTC XOM RD Groups = [1 1 0 ; % North America 0 0 1 ; % Europe 1 0 0 ; % Technology 1 1]; % Energy 0 GroupMin = [0.30]0.10 0.20 0.50]; GroupMax = [0.75]0.55 0.50 0.50]; [A,b] = pcglims(Groups, GroupMin, GroupMax) A = - 1 - 1 0 0 0 - 1 - 1 0 0 0 - 1 - 1 1 1 0 0 0 1 1 0 0 0 1 1

b = -0.3000 -0.1000 -0.2000 -0.5000 0.7500 0.5500 0.5000 0.5000

Portfolio weights of 50% in INTC, 25% in XOM, and 25% in RD satisfy the constraints.

See Also pcalims, pcgcomp, pcpval, portcons, portopt

pcpval

Purpose	Linear inequalities for fixing total portfolio value			
Syntax	[A,b] = pcpval(PortValue, NumAssets)			
Arguments	PortValue Scalar total value of asset portfolio (sum of the allocations in all assets). PortValue = 1 specifies weights as fractions of the portfolio and return and risk numbers as rates instead of value.			
	NumAssets Number of available asset investments.			
Description	[A,b] = pcpval(PortValue, NumAssets) scales the total value of a portfolio of NumAssets assets to PortValue. All portfolio weights, bounds, return, and risk values except ExpReturn and ExpCovariance (see portopt) are in terms of PortValue.			
	A is a matrix and b a vector such that $A*PortWts' \leq b$, where PortWts is a 1-by-NASSETS vector of asset allocations.			
	If pcpval is called with fewer than two output arguments, the function returns A concatenated with b [A,b].			
Examples	Scale the value of a portfolio of three assets to 1, so all return values are rates and all weight values are in fractions of the portfolio.			
	PortValue = 1; NumAssets = 3;			
	[A,b] = pcpval(PortValue, NumAssets)			
	A =			
	1 1 1 -1 -1 -1			
	b =			
	1 -1			

Portfolio weights of 40%, 10%, and 50% in the three assets satisfy the constraints.

See Also pcalims, pcgcomp, pcglims, portcons, portopt

pointfig

Purpose	Point and figure chart
Syntax	<pre>pointfig(Asset)</pre>
Description	pointfig(Asset) plots a point and figure chart for a vector of price data Asset. Upward price movements are plotted as X's and downward price movements are plotted as O's.
See Also	bolling, candle, dateaxis, highlow, movavg

Purpose	Optimal capital allocation to efficient frontier portfolios			
Syntax	[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn, PortWts, RisklessRate, BorrowRate, RiskAversion)			
Arguments	PortRisk	Standard deviation of each risky asset efficient frontier portfolio. A number of portfolios (NPORTS) by 1 vector.		
	PortReturn	Expected return of each risky asset efficient frontier portfolio. An NPORTS-by-1 vector.		
	PortWts	Weights allocated to each asset. An NPORTS by number of assets (NASSETS) matrix of weights allocated to each asset. Each row represents an efficient frontier portfolio of risky assets. Total of all weights in a portfolio is 1.		
	RisklessRate	Risk-free lending rate. A decimal number.		
	BorrowRate	(Optional) Borrowing rate. A decimal number. If borrowing is not desired, or not an option, set to NaN (default).		
	RiskAversion	(Optional) Coefficient of investor's degree of risk aversion. Higher numbers indicate greater risk aversion. Typical coefficients range between 2.0 and 4.0 (Default = 3).		
Description	[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn, PortWts, RisklessRate, BorrowRate, RiskAversion) computes the optimal risky portfolio, and the optimal allocation of funds between the risky portfolio and the risk-free asset.			
	RiskyRisk is the	e standard deviation of the optimal risky portfolio.		
	RiskyReturn is the expected return of the optimal risky portfolio.			
	RiskyWts is a 1-by-NASSETS vector of weights allocated to the optimal risky portfolio. The total of all weights in the portfolio is 1.			
	RiskyFraction i portfolio.	is the fraction of the complete portfolio allocated to the risky		
	OverallRisk is t	the standard deviation of the optimal overall portfolio.		

portalloc

OverallReturn is the expected rate of return of the optimal overall portfolio.

portalloc generates a plot of the optimal capital allocation if you invoke it without output arguments.

Examples

Generate the efficient frontier from the asset data.

 $ExpReturn = [0.1 \ 0.2 \ 0.15];$

ExpCovariance = [0.005 -0.010 0.004 -0.010 0.040 -0.002 0.004 -0.002 0.023]; [PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...

ExpCovariance);

Find the optimal risky portfolio and allocate capital. The risk free investment return is 8%, and the borrowing rate is 12%.

```
RisklessRate = 0.08;
BorrowRate
              = 0.12;
RiskAversion = 3;
[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, ...
OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn,...
PortWts, RisklessRate, BorrowRate, RiskAversion)
RiskyRisk =
    0.1283
RiskyReturn =
    0.1788
RiskyWts =
    0.0265
              0.6023
                        0.3712
RiskyFraction =
    1.1898
```

	OverallRisk =
	0.1527
	OverallReturn =
	0.1899
See Also	frontcon, portrand, portstats
References	Bodie, Kane, and Marcus, Investments, Second Edition, Chapters 6 and 7.

portcons

Purpose	Portfolio constraints
Syntax	ConSet = portcons(varargin)
Description	Using linear inequalities, portcons generates a matrix of constraints for a portfolio of asset investments. The matrix ConSet is defined as ConSet = [A b]. A is a matrix and b a vector such that A*PortWts' <= b sets the value, where PortWts is a 1 by number of assets (NASSETS) vector of asset allocations. ConSet = portcons('ConstType', Data1,, DataN) creates a matrix
	ConSet, based on the constraint type ConstType, and the constraint parameters Data1,, DataN.
	ConSet = portcons('ConstType1', Data11,, Data1N,'ConstType2',

ConSet = portcons('ConstType1', Data11, ..., Data1N,'ConstType2', Data21, ..., Data2N, ...) creates a matrix ConSet, based on the constraint types ConstTypeN, and the corresponding constraint parameters DataN1, ..., DataNN.

Constraint Type	Description	Values
Default	All allocations are >= 0; no short selling allowed. Combined value of portfolio allocations normalized to 1.	NumAssets (required). Scalar representing number of assets in portfolio.
PortValue	Fix total value of portfolio to PVa1.	PVal (required). Scalar representing total value of portfolio.NumAssets (required).Scalar representing number of assets in portfolio. See pcpval.

Constraint Type	Description	Values
AssetLims	Minimum and maximum allocation per asset.	AssetMin (required). Scalar or vector of length NASSETS, specifying minimum allocation per asset.
		AssetMax (required). Scalar or vector of length NASSETS, specifying maximum allocation per asset. NumAssets (optional). See pcalims.
GroupLims	Minimum and maximum allocations to asset group.	Groups (required). NGROUPS-by-NASSETS matrix specifying which assets belong to each group.
		GroupMin (required). Scalar or a vector of length NGROUPS, specifying minimum combined allocations in each group.
		GroupMax (required). Scalar or a vector of length NGROUPS, specifying maximum combined allocations in each group.
		See pcglims.

portcons

Constraint Type	Description	Values
GroupComparison	Group-to-group comparison constraints.	GroupA (required). NGROUPS-by-NASSETS matrix specifying first group in the comparison.
		AtoBmin (required). Scalar or vector of length NGROUPS specifying minimum ratios of allocations in GroupA to allocations in GroupB.
		AtoBmax (required). Scalar or vector of length NGROUPS specifying maximum ratios of allocations in GroupA to allocations in GroupB.
		GroupB (required). NGROUPS-by-NASSETS matrix specifying second group in the comparison.
		See pcgcomp.
Custom	Custom linear inequality constraints A*PortWts' <= b.	A (required). NCONSTRAINTS - by-NASSETS matrix, specifying weights for each asset in each inequality equation.
		b (required). Vector of length NCONSTRAINTS specifying the right hand sides of the inequalities.

Examples Constrain a portfolio of three assets:

Asset	IBM	HPQ	XOM
Group	А	А	В
Min. Wt.	0	0	0
Max. Wt.	0.5	0.9	0.8

```
ConSet = portcons('PortValue', PVal, NumAssets,'AssetLims',...
AssetMin, AssetMax, NumAssets, 'GroupComparison',GroupA, NaN,...
AtoBmax, GroupB)
```

ConSet =

1.0000	1.0000	1.0000	1.0000
-1.0000	-1.0000	-1.0000	-1.0000
1.0000	0	0	0.5000
0	1.0000	0	0.9000
0	0	1.0000	0.8000
-1.0000	0	0	0
0	-1.0000	0	0
0	0	-1.0000	0
1.0000	1.0000	-1.5000	0

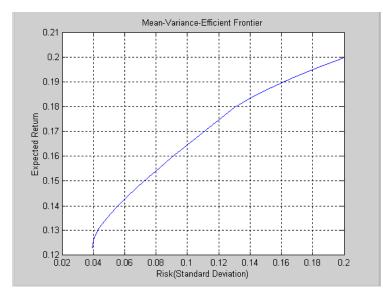
Portfolio weights of 30% in IBM, 30% in HPQ, and 40% in XOM satisfy the constraints.

See Also pcalims, pcgcomp, pcglims, pcpval, portopt

portopt

Purpose	Portfolios on constrained efficient frontier			
Syntax	[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts, PortReturn, ConSet)			
Arguments	ExpReturn	1 by number of assets (NASSETS) vector specifying the expected (mean) return of each asset.		
	ExpCovariance	NASSETS-by-NASSETS matrix specifying the covariance of the asset returns.		
	NumPorts	(Optional) Number of portfolios generated along the efficient frontier. Returns are equally spaced between the maximum possible return and the minimum risk point. If NumPorts is empty (entered as []), computes 10 equally spaced points.		
	PortReturn	(Optional) Expected return of each portfolio. A number of portfolios (NPORTS) by 1 vector. If not entered or empty, NumPorts equally spaced returns between the minimum and maximum possible values are used.		
	ConSet	(Optional) Constraint matrix for a portfolio of asset investments, created using portcons. If not specified, a default is created.		
Description	<pre>[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts, PortReturn, ConSet) returns the mean-variance efficient frontier with user-specified covariance, returns, and asset constraints (ConSet). Given a collection of NASSETS risky assets, computes a portfolio of asset investment weights that minimize the risk for given values of the expected return. The portfolio risk is minimized subject to constraints on the total portfolio value, the individual asset minimum and maximum allocation, the asset group minimum and maximum allocation, or the asset group-to-group comparison.</pre>			
	PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.			
	PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset. Each row represents a portfolio. The total of all weights in a portfolio is 1.			

If portopt is invoked without output arguments, it returns a plot of the efficient frontier.


Examples Plot the risk-return efficient frontier of portfolios allocated among three assets. Connect 20 portfolios along the frontier having evenly spaced returns. By default, choose among portfolios without short-selling and scale the value of the portfolio to 1.

 $ExpReturn = [0.1 \ 0.2 \ 0.15];$

ExpCovariance	= [0.005	-0.010	0.004
	-0.010	0.040	-0.002
	0.004	-0.002	0.023];

NumPorts = 20;

portopt(ExpReturn, ExpCovariance, NumPorts)

Return the two efficient portfolios that have returns of 16% and 17%. Limit to portfolios that have at least 20% of the allocation in the first asset, and cap the total value in the first and third assets at 50% of the portfolio.

portopt

```
ExpReturn = [0.1 \ 0.2 \ 0.15];
                                   0.004
ExpCovariance = [0.005]
                         -0.010
                                   -0.002
                -0.010
                          0.040
                 0.004
                         -0.002
                                    0.023];
PortReturn = [0.16]
              0.17];
NumAssets = 3;
AssetMin = [0.20 NaN NaN];
Group
        = [1
              0
                     1];
GroupMax = 0.50;
ConSet = portcons('Default', NumAssets, 'AssetLims', AssetMin,...
NaN, 'GroupLims', Group, NaN, GroupMax);
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, [], PortReturn, ConSet)
PortRisk =
    0.0919
    0.1138
PortReturn =
    0.1600
    0.1700
PortWts =
    0.3000
              0.5000
                        0.2000
    0.2000
              0.6000
                        0.2000
```

See Also ewstats, frontcon, portcons, portstats

portrand

Purpose	Randomized portfolio risks, returns, and weights		
Syntax	- ,	PortReturn, PortWts] = portrand(Asset, Return, Points) set, Return, Points)	
Arguments	Asset	Matrix of time series data. Each row is an observation and each column represents a single security.	
	Return	(Optional) Row vector where each column represents the rate of return for the corresponding security in Asset. By default, Return is computed by taking the average value of each column of Asset.	
	Points	(Optional) Scalar that specifies how many random points should be generated. Default = 1000.	
Description	[PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points) returns the risks, rates of return, and weights of random portfolio configurations.		
	PortRisk	Points-by-1 vector of standard deviations.	
	PortReturn	Points-by-1 vector of expected rates of return.	
	PortWts	Points by number of securities matrix of asset weights. Each row of PortWts is a different portfolio configuration.	
	portrand(Asset, Return, Points) plots the points representing each portfolio configuration. It does not return any data to the MATLAB workspa		
See Also	frontcon		
References	Bodie, Kane, and Marcus, Investments, Chapter 7.		

portsim

Purpose	Monte Carlo simulation of correlated asset returns		
Syntax	RetSeries = portsim(ExpReturn, ExpCovariance, NumObs, RetIntervals, NumSim, <i>Method</i>)		
Arguments	ExpReturn	1 by number of assets (NASSETS) vector specifying the expected (mean) return of each asset.	
	ExpCovariance	NASSETS-by-NASSETS matrix of asset return covariances. ExpCovariance must be symmetric and positive semidefinite (no negative eigenvalues). The standard deviations of the returns are: ExpSigma = sqrt(diag(ExpCovariance)).	
	NumObs	Positive scalar integer indicating the number of consecutive observations in the return time series. If NumObs is entered as the empty matrix [], the length of RetIntervals is used.	
	RetIntervals	(Optional) Positive scalar or number of observations (NUMOBS) by 1 vector of interval times between observations. If RetIntervals is not specified, all intervals are assumed to have length 1.	
	NumSim	(Optional) Positive scalar integer indicating the number of simulated sample paths (realizations) of NUMOBS observations. Default = 1 (single realization of NUMOBS correlated asset returns).	

Method	(Optional) String indicating the type of Monte Carlo simulation:
	'Exact' (default) generates correlated asset returns in which the sample mean and covariance match the input mean (ExpReturn) and covariance (ExpCovariance) specifications.
	'Expected' generates correlated asset returns in which the sample mean and covariance are statistically equal to the input mean and covariance specifications. (The expected value of the sample mean and covariance are equal to the input mean (ExpReturn) and covariance (ExpCovariance) specifications.)
	For either method the sample mean and covariance returned are appropriately scaled by RetIntervals.

Description portsim simulates correlated returns of NASSETS assets over NUMOBS consecutive observation intervals. Asset returns are simulated as the proportional increments of constant drift, constant volatility stochastic processes, thereby approximating continuous-time geometric Brownian motion.

RetSeries is a NUMOBS-by-NASSETS-by-NUMSIM three-dimensional array of correlated, normally distributed, proportional asset returns. Asset returns over an interval of length dt are given by

$$\frac{dS}{S} = \mu dt + \sigma dz = \mu dt + \sigma \varepsilon \sqrt{dt}$$

where S is the asset price, μ is the expected rate of return, σ is the volatility of the asset price, and ϵ represents a random drawing from a standardized normal distribution.

Notes 1. When *Method* is 'Exact', the sample mean and covariance of all realizations (scaled by RetIntervals) match the input mean and covariance. When the returns are subsequently converted to asset prices, all terminal prices for a given asset are in close agreement. Although all realizations are drawn independently, they produce similar terminal asset prices. Set *Method*

portsim

	to 'Expected' to avoid this behavior.					
Evenuelos	2. The returns from PortReturn = Poly which each row con PortReturn correst each column correst realization (the fin portfolio specificat	rtWts * Ret entains the as sponds to one sponds to on rst plane) in F tion and optim	Series(:, sset alloca e of the por e of the ob RetSeries mization.	, : , 1) ', wl tions of a rtfolios ide oservation a. See port	here Port portfolio. entified in s taken fr copt and	Each row of PortWts, and rom the first
Examples	Example 1. Distin	ction Betwee	en Simulai	tion Metho	ods	
	This example high methods of simula	-	stinction ł	oetween tł	ne Exact a	and Expected
	Consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on daily asset returns.					
	ExpReturn Sigmas Correlations	= [0.0246 = [0.9509 = [1.0000 0.4403 0.4735 0.4334 0.6855	0.0189 1.4259 0.4403 1.0000 0.7597 0.7809 0.4343	0.4735 0.7597	0.0141 1.1062 0.4334 0.7809 0.6978 1.0000 0.4289	0.4926
	Convert the correl	lations and st	tandard de	eviations t	to a covar	iance matrix.
	ExpCovariance	e = corr2cov	/(Sigmas,	Correla	tions);	
	ExpCovariance	. =				
	1.0e-003 *					
	0.0904	0.0597	0.0686	0.0456	0.07	09
	0.0597	0.2033	0.1649	0.1232	0.06	74
	0.0686	0.1649	0.2319	0.1175	0.08	16
	0.0456	0.1232	0.1175	0.1224	0.05	16
	0.0709	0.0674	0.0816	0.0516	0.11	83

Assume that there are 252 trading days in a calendar year, and simulate two sample paths (realizations) of daily returns over a two-year period. Since ExpReturn and ExpCovariance are expressed on a daily basis, set RetIntervals = 1.

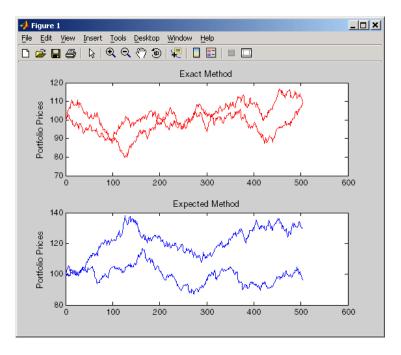
```
StartPrice = 100;
NumObs = 504; % two calendar years of daily returns
NumSim = 2;
RetIntervals = 1; % one trading day
NumAssets = 5;
```

To illustrate the distinction between methods, simulate two paths by each method, starting with the same random number state.

```
randn('state',0);
RetExact = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Exact');
randn('state',0);
RetExpected = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Expected');
```

If you compare the mean and covariance of RetExact with the inputs (ExpReturn and ExpCovariance), you will observe that they are almost identical.

At this point, RetExact and RetExpected are both 504-by-5-by-2 arrays. Now assume an equally-weighted portfolio formed from the five assets and create arrays of portfolio returns in which each column represents the portfolio return of the corresponding sample path of the simulated returns of the five assets. The portfolio arrays PortRetExact and PortRetExpected are 504-by-2 matrices.


```
Weights = ones(NumAssets, 1)/NumAssets;
PortRetExact = zeros(NumObs, NumSim);
PortRetExpected = zeros(NumObs, NumSim);
for i = 1:NumSim
    PortRetExact(:,i) = RetExact(:,:,i) * Weights;
    PortRetExpected(:,i) = RetExpected(:,:,i) * Weights;
end
```

portsim

Finally, convert the simulated portfolio returns to prices and plot the data. In particular, note that since the Exact method matches expected return and covariance, the terminal portfolio prices are virtually identical for each sample path. This is not true for the Expected simulation method.

Although this example examines portfolios, the same methods apply to individual assets as well. Thus, Exact simulation is most appropriate when unique paths are required to reach the same terminal prices.

```
PortExact = ret2tick(PortRetExact, ...
repmat(StartPrice,1,NumSim));
PortExpected = ret2tick(PortRetExpected, ...
repmat(StartPrice,1,NumSim));
subplot(2,1,1), plot(PortExact, '-r')
ylabel('Portfolio Prices')
title('Exact Method')
subplot(2,1,2), plot(PortExpected, '-b')
ylabel('Portfolio Prices')
title('Expected Method')
```


Example 2. Interaction between ExpReturn, ExpCovariance and RetIntervals

Recall that portsim simulates correlated asset returns over an interval of length dt, given by the equation

$$\frac{dS}{S} = \mu dt + \sigma dz = \mu dt + \sigma \varepsilon \sqrt{dt}$$

where S is the asset price, μ is the expected rate of return, σ is the volatility of the asset price, and ϵ represents a random drawing from a standardized normal distribution.

The time increment dt is determined by the optional input RetIntervals, either as an explicit input argument or as a unit time increment by default. Regardless, the periodicity of ExpReturn, ExpCovariance and RetIntervals must be consistent. For example, if ExpReturn and ExpCovariance are annualized, then RetIntervals must be in years. This point is often misunderstood.

To illustrate the interplay among ExpReturn, ExpCovariance, and RetIntervals, consider a portfolio of five assets with the following expected returns, standard deviations, and correlation matrix based on daily asset returns.

ExpReturn	= [0.0246	0.0189	0.0273	0.0141	0.0311]/100;
Sigmas	= [0.9509	1.4259	1.5227	1.1062	1.0877]/100;
Correlations	0.4403 0.4735 0.4334	1.0000 0.7597 0.7809	0.7597 1.0000 0.6978	0.7809 0.6978 1.0000	0.4343 0.4926

Convert the correlations and standard deviations to a covariance matrix of daily returns.

```
ExpCovariance = corr2cov(Sigmas, Correlations);
```

Assume 252 trading days per calendar year, and simulate a single sample path of daily returns over a four-year period. Since the ExpReturn and ExpCovariance inputs are expressed on a daily basis, set RetIntervals = 1.

```
StartPrice = 100;
NumObs = 1008; % four calendar years of daily returns
RetIntervals = 1; % one trading day
NumAssets = length(ExpReturn);
randn('state',0);
RetSeries1 = portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, 1, 'Expected');
```

Now annualize the daily data, thereby changing the periodicity of the data, by multiplying ExpReturn and ExpCovariance by 252 and dividing RetIntervals by 252 (RetIntervals = 1/252 of a year).

Resetting the random number generator to its initial state, you can reproduce the results.

```
randn('state',0);
RetSeries2 = portsim(ExpReturn*252, ExpCovariance*252, ...
NumObs, RetIntervals/252, 1, 'Expected');
```

Assume an equally-weighted portfolio and compute portfolio returns associated with each simulated return series.

```
Weights = ones(NumAssets, 1)/NumAssets;
PortRet1 = RetSeries2 * Weights;
PortRet2 = RetSeries2 * Weights;
```

Comparison of the data reveals that PortRet1 and PortRet2 are identical.

Example 3. Univariate Geometric Brownian Motion

This example simulates a univariate geometric Brownian motion process. It is based on an example found in Hull, *Options, Futures, and Other Derivatives*, 5th Edition. (See example 12.2 on page 236). In addition to verifying Hull's example, it also graphically illustrates the lognormal property of terminal stock prices by a rather large Monte Carlo simulation.

First, assume you own a stock with an initial price of \$20, an annualized expected return of 20% and volatility of 40%. Simulate the daily price process for this stock over the course of one full calendar year (252 trading days).

```
StartPrice = 20;
ExpReturn = 0.2;
```

ExpCovariance = 0.4²; NumObs = 252; NumSim = 10000; RetIntervals = 1/252;

Note that RetIntervals is expressed in years, consistent with the fact that ExpReturn and ExpCovariance are annualized. Also, note that ExpCovariance is entered as a variance rather than the more familiar standard deviation (volatility).

Now set the random number generator state, and simulate 10,000 trials (realizations) of stock returns over a full calendar year of 252 trading days.

```
randn('state',10);
RetSeries = squeeze(portsim(ExpReturn, ExpCovariance, NumObs, ...
RetIntervals, NumSim, 'Expected'));
```

The squeeze function simply reformats the output array of simulated returns from a 252-by-1-by-10000 array to more convenient 252-by-10000 array. (Recall that portsim is fundamentally a multivariate simulation engine).

In accordance with Hull's equations 12.4 and 12.5 on page 236

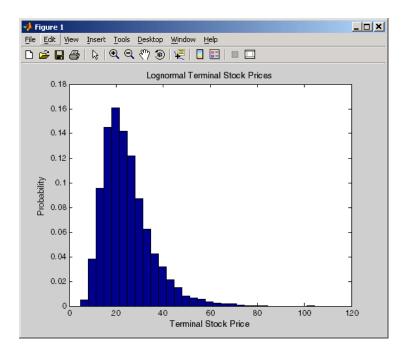
 $E(S_T) = S_0 e^{\mu T}$ $var(S_T) = S_0^2 e^{2\mu T} (e^{\sigma^2 T} - 1)$

convert the simulated return series to a price series and compute the sample mean and the variance of the terminal stock prices.

StockPrices = ret2tick(RetSeries, repmat(StartPrice, 1, NumSim));
SampMean = mean(StockPrices(end,:))

SampMean =

24.4587


portsim

```
SampVar = var(StockPrices(end,:))
SampVar =
    104.2016
Compare these values with the values you obtain by using Hull's equations.
ExpValue = StartPrice*exp(ExpReturn)
ExpValue =
    24.4281
ExpVar = ...
StartPrice*StartPrice*exp(2*ExpReturn)*(exp((ExpCovariance)) - 1)
ExpVar =
    103.5391
```

These results are very close to the results shown in Hull's example 12.2.

Next, display the sample density function of the terminal stock price after one calendar year. From the sample density function, the lognormal distribution of terminal stock prices is apparent.

```
[count, BinCenter] = hist(StockPrices(end,:), 30);
figure
bar(BinCenter, count/sum(count), 1, 'r')
xlabel('Terminal Stock Price')
ylabel('Probability')
title('Lognormal Terminal Stock Prices')
```


See Also ewstats, portopt, portstats, randn, ret2tick

References Hull, John, C., *Options, Futures, and Other Derivatives*, Upper Saddle River, New Jersey: Prentice-Hall. 5th ed., 2003, ISBN 0-13-009056-5.

portstats

Purpose	Portfolio expected return and risk			
Syntax	[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance, PortWts)			
Arguments	ExpReturn	1 by number expected (me		ASSETS) vector specifying the f each asset.
	ExpCovariance	NASSETS-by-I the asset ret		rix specifying the covariance of
	PortWts	matrix of we represents a	ights allocat different we	rtfolios (NPORTS) by NASSETS ed to each asset. Each row ighting combination. ally weighted).
Description				oReturn, ExpCovariance, rn and risk for a portfolio of assets.
	PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.			
	PortReturn is an	NPORTS-by-1 $ m v$	ector of the e	expected return of each portfolio.
Examples	ExpReturn =	[0.1 0.2 0.1	5];	
	ExpCovariance	e = [0.0100 -0.0061 0.0042	-0.0061 0.0400 -0.0252	0.0042 -0.0252 0.0225];
	PortWts=[0.4	0.2 0.4; 0.2	2 0.4 0.2];	
	[PortRisk, Po PortWts)	ortReturn] =	portstats(ExpReturn, ExpCovariance,
	PortRisk =			
	0.0560 0.0550			

PortReturn =

0.1400 0.1300

See Also

frontcon

portvrisk

Purpose	Portfolio value at risk		
Syntax	ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold, PortValue)		
Arguments	PortReturn	Number of portfolios (NPORTS) by 1 vector or scalar of the expected return of each portfolio over the period.	
	PortRisk	NPORTS-by-1 vector or scalar of the standard deviation of each portfolio over the period.	
	RiskThreshold	(Optional) NPORTS-by-1 vector or scalar specifying the loss probability. Default = $0.05 (5\%)$.	
	PortValue	(Optional) NPORTS-by-1 vector or scalar specifying the total value of asset portfolio. Default = 1.	
Description	PortValue) retu	cortvrisk(PortReturn, PortRisk, RiskThreshold, rns the maximum potential loss in the value of a portfolio over e, given the loss probability level RiskThreshold.	
		n NPORTS-by-1 vector of the estimated maximum loss in the ed with a confidence probability of 1- RiskThreshold.	
	If PortValue is no of 0 indicates no	ot given, ValueAtRisk is presented on a per-unit basis. A value losses.	
Examples	This example cor	nputes ValueAtRisk on a per-unit basis.	
	PortValue =	.08/100; d = [0.01;0.05;0.10]; 1; = portvrisk(PortReturn,PortRisk, d,PortValue)	
	0.0688 0.0478 0.0366		

This example computes ValueAtRisk with actual values.

```
PortReturn = [0.29/100;0.30/100];
PortRisk = [3.08/100;3.15/100];
RiskThreshold = 0.10;
PortValue = [1000000000;500000000];
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)
ValueAtRisk =
1.0e+007 *
```

- 3.6572
- 1.8684

See Also

frontcon, portopt

prbyzero

Purpose	Price bonds	in a portfolio by	a set of zero curves
Syntax	BondPrices	= prbyzero(Bo	nds, Settle, ZeroRates, ZeroDates)
Arguments	Bonds	bonds (NUMBONE The first two co must be added number of colu	nformation used to compute prices. A number of DS) by 6 matrix where each row describes a bond. olumns are required; the rest are optional but in order. All rows in Bonds must have the same mns. Columns are ponRate Face Period Basis EndMonthRule]
		Maturity	Maturity date as a serial date number or date string
		CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond
		Face	(Optional) Face or par value of the bond. Default = 100.
		Period	(Optional) Coupons per year of the bond. Allowed values are 0,1, 2 (default), 3, 4, 6, and 12.
		Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).
		EndMonthRule	(Optional) End-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

	Settle	Serial date number of the settlement date.
	ZeroRates	NUMDATES-by-NUMCURVES matrix of observed zero rates, as decimal fractions. Each column represents a rate curve. Each row represents an observation date.
	ZeroDates	NUMDATES-by-1 column of dates for observed zeros
Description		= prbyzero(Bonds, Settle, ZeroRates, ZeroDates) e bond prices in a portfolio using a set of zero curves.
		is a NUMBONDS-by-NUMCURVES matrix of clean bond prices. Each erived from the corresponding zero curve in ZeroRates.
Examples	bonds and t	e uses <code>zbtprice</code> to compute a zero curve given a portfolio of coupon heir prices. It then reverses the process, using the zero curve as <code>yzero</code> to compute the prices.
	Bonds =	[datenum('6/1/1998') 0.0475 100 2 0 0; datenum('7/1/2000') 0.06 100 2 0 0; datenum('7/1/2000') 0.09375 100 6 1 0; datenum('6/30/2001') 0.05125 100 1 3 1; datenum('4/15/2002') 0.07125 100 4 1 0; datenum('1/15/2000') 0.065 100 2 0 0; datenum('9/1/1999') 0.08 100 3 3 0; datenum('4/30/2001') 0.05875 100 2 0 0; datenum('11/15/1999') 0.07125 100 2 0 0; datenum('6/30/2000') 0.07 100 2 3 1; datenum('7/1/2001') 0.0525 100 2 3 0; datenum('4/30/2002') 0.07 100 2 0 0];
	Prices =	<pre>[99.375; 99.875; 105.75 ; 96.875; 103.625; 101.125; 103.125; 99.375; 101.0 ; 101.25 ;</pre>

prbyzero

```
96.375;
102.75 ];
Settle = datenum('12/18/1997');
```

Set semiannual compounding for the zero curve, on an actual/365 basis. Derive the zero curve within 50 iterations.

```
OutputCompounding = 2;
OutputBasis = 3;
MaxIterations = 50;
```

Execute zbtprice

```
[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle,...
OutputCompounding, OutputBasis, MaxIterations)
```

which returns the zero curve at the maturity dates.

ZeroRates =

```
0.0616
0.0609
0.0658
0.0590
0.0648
0.0655
0.0606
0.0601
0.0642
0.0621
0.0627
```

ZeroDates =

```
729907
730364
730439
730500
730667
730668
730971
```

731032 731033 731321 731336 Now execute prbyzero BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates) which returns BondPrices = 99.38 98.80 106.83 96.88 103.62 101.13 103.12 99.36 101.00 101.25 96.37 102.74 In this example <code>zbtprice</code> and <code>prbyzero</code> do not exactly reverse each other. Many of the bonds have the end-of-month rule off (EndMonthRule = 0). The rule subtly affects the time factor computation. If you set the rule on (EndMonthRule = 1) everywhere in the Bonds matrix, then prbyzero returns the original prices, except when the two incompatible prices fall on the same

See Also tr2bonds, zbtprice

maturity date.

prdisc

Purpose	Price of discounted security			
Syntax	Price = prd	isc(Settle, Maturity, Face, Discount, Basis)		
Arguments	Settle Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.			
	Maturity	Enter as serial date number or date string.		
	Face	Redemption (par, face) value.		
	Discount	Bank discount rate of the security. Enter as decimal fraction.		
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).		
Description	Price = prdisc(Settle, Maturity, Face, Discount, Basis) returns the price of a security whose yield is quoted as a bank discount rate (e.g., U. S. Treasury Bills).			
Examples	Using this data			
	Settle = '10/14/2000'; Maturity = '03/17/2001'; Face = 100; Discount = 0.087; Basis = 2;			
	Price = prdisc(Settle, Maturity, Face, Discount, Basis)			
	returns			
	Price =			
		96.2783		
See Also	acrudisc, bn	dprice, discrate, prmat, ylddisc		

References Mayle, *Standard Securities Calculation Methods*, Volumes I-II, 3rd edition. Formula 2.

prmat

Purpose	Price with interest at maturity		
Syntax	[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face, CouponRate, Yield, Basis)		
Arguments	Settle	Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.	
	Maturity	Enter as serial date number or date string.	
	Issue	Enter as serial date number or date string.	
	Face	Redemption (par, face) value.	
	CouponRate	Enter as decimal fraction.	
	Yield	Annual yield. Enter as decimal fraction.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).	
Description	CouponRate, security that	ruInterest] = prmat(Settle, Maturity, Issue, Face, Yield, Basis) returns the price and accrued interest of a pays interest at maturity. This function also applies to bonds or pure discount securities by setting CouponRate = 0.	
Examples	Using this da	ta	
	Maturity Issue = ' Face = 10 CouponRat Yield = 0 Basis = 1	e = 0.0608; .0608; ;	
		ccruInterest] = prmat(Settle, Maturity, Issue, Face, e, Yield, Basis)	

	returns
	Price =
	99.9784
	AccruInterest =
	1.9591
See Also	acrubond, acrudisc, bndprice, prdisc, yldmat
References	Mayle, <i>Standard Securities Calculation Methods</i> , Volumes I-II, 3rd edition. Formula 4.

prtbill

Purpose	Price of Treasury bill					
Syntax	Price = prt	Price = prtbill(Settle, Maturity, Face, Discount)				
Arguments	Settle Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.					
	Maturity	Enter as serial date number or date string.				
	Face	Redemption (par, face) value.				
	Discount	Discount rate of the Treasury bill. Enter as decimal fraction.				
Description	Price = prtbill(Settle, Maturity, Face, Discount) returns the price for a Treasury bill.					
Examples	The settlement date of a Treasury bill is February 10, 2002, the maturity date is August 6, 2002, the discount rate is 3.77%, and the par value is \$1000. Using this data					
	Price = prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)					
	returns					
	Price = 981.4642					
See Also	beytbill, yldtbill					
References	Bodie, Kane, and Marcus, Investments, pages 41-43.					

Purpose	Present value with fixed periodic payments					
Syntax	PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)					
Arguments	ratePeriodic interest rate, as a decimal fraction.NumPeriodsNumber of periods.PaymentPeriodic payment.ExtraPayment(Optional) Payment received other than Payment in the last period. Default = 0.Due(Optional) When payments are due or made: 0 = end of period (default), or 1 = beginning of period.					
Description	PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due) returns the present value of a series of equal payments.					
Examples	<pre>\$200 is paid monthly into a savings account earning 6%. The payments are made at the end of the month for five years. To find the present value of these payments PresentVal = pvfix(0.06/12, 5*12, 200, 0, 0)</pre>					
	returns					
	PresentVal	=				
		10345.11				
See Also	fvfix, fvvar, payper, pvvar					

pvvar

Purpose	Present value of varying cash flow					
Syntax	PresentVal	= pvvar(CashFlow, Rate, IrrCFDates)				
Arguments	CashFlow A vector of varying cash flows. Include the initial investment as the initial cash flow value (a negative number).					
	Rate	Periodic interest rate. Enter as a decimal fraction.				
	IrrCFDates	(Optional) For irregular (nonperiodic) cash flows, a vector of dates on which the cash flows occur. Enter dates as serial date numbers or date strings. Default assumes CashFlow contains regular (periodic) cash flows.				
Description	PresentVal = pvvar(CashFlow, Rate, IrrCFDates) returns the net present value of a varying cash flow.					
Examples	This cash flow represents the yearly income from an initial investment of \$10,000. The annual interest rate is 8%.					
	Year 1 \$2000					
	Year 2 \$	1500				
	Year 3 \$	3000				
	Year 4 \$	3800				
	Year 5 \$	5000				
	To calculate the net present value of this regular cash flow					
	PresentVal = pvvar([-10000 2000 1500 3000 3800 5000], 0.08)					
	returns					
	PresentVa	al =				
	1715.39					

An investment of \$10,000 returns this irregular cash flow. The original investment and its date are included. The periodic interest rate is 9%.

Cash flow	Dates		
(\$10000)	January 12, 1987		
\$2500	February 14, 1988		
\$2000	March 3, 1988		
\$3000	June 14, 1988		
\$4000	December 1, 1988		

To calculate the net present value of this irregular cash flow

CashFlow = [-10000, 2500, 2000, 3000, 4000]; IrrCFDates = ['01/12/1987' '02/14/1988' '03/03/1988' '06/14/1988' '12/01/1988']; PresentVal = pvvar(CashFlow, 0.09, IrrCFDates) returns PresentVal = 142.16

See Also fvfix, fvvar, irr, payuni, pvfix

pyld2zero

Purpose	Zero curve given a par yield curve					
Syntax		[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle, Compounding, Basis, OutputCompounding)				
Arguments	ParRates	Column vector of annualized implied par yield rates, as decimal fractions. (Par yields = coupon rates.) In aggregate, the yield rates in ParRates constitute an implied par yield curve for the investment horizon represented by CurveDates. Column vector of maturity dates (as serial date numbers) that correspond to the par rates. A serial date number that is the common settlement date for the par rates.				
	CurveDates					
	Settle					
	Compounding	(Optional) A scalar that sets the rate at which the par rates are compounded when annualized. Allowed values are:				
		1 annual compounding				
		2 semiannual compounding (default)				
		3 compounding three times per year				
		4 quarterly compounding				
		6 bimonthly compounding				
		12 monthly compounding				
		365 daily compounding				
		-1 continuous compounding				
	Basis	(Optional) Day-count basis used to annualize the zero rates. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), 2 = actual/360, $3 = actual/365$, $4 = 30/360$ (PSA), 5 = 30/360 (ISDA), $6 = 30/360$ (European), 7 = actual/365 (Japanese).				
	OutputCompounding	g (Optional) Value representing the rate at which the zero rates are compounded. Default = Compounding.				

Description	[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle, Compounding, Basis, OutputCompounding) returns a zero curve given a par yield curve and its maturity dates.			
	ZeroRates	Column vector of decimal fractions. In aggregate, the rates in ZeroRates constitute a zero curve for the investment horizon represented by CurveDates.		
	CurveDates	Column vector of maturity dates (as serial date numbers) corresponding to the zero rates. This vector is the same as the input vector CurveDates.		

Examples

- Given
- A par yield curve over a set of maturity dates
- A settlement date
- Annual compounding for the input par rates and monthly compounding for the output zero curve

compute a zero yield curve.

```
ParRates = [0.0479]
            0.0522
            0.0540
            0.0540
            0.0536
            0.0532
            0.0532
            0.0539
            0.0558
            0.0543];
CurveDates = [datenum('06-Nov-2000')
      datenum('11-Dec-2000')
      datenum('15-Jan-2001')
      datenum('05-Feb-2001')
      datenum('04-Mar-2001')
      datenum('02-Apr-2001')
      datenum('30-Apr-2001')
      datenum('25-Jun-2001')
```

pyld2zero

```
datenum('04-Sep-2001')
      datenum('12-Nov-2001')];
Settle = datenum('03-Nov-2000');
Compounding = 1;
OutputCompounding = 12;
[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates,...
Settle, Compounding, [], OutputCompounding)
ZeroRates =
    0.0484
    0.0529
    0.0549
    0.0550
    0.0547
    0.0544
    0.0545
    0.0551
    0.0572
    0.0557
CurveDates =
      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167
```

For readability, ParRates and ZeroRates are shown only to the basis point. However, MATLAB computes them at full precision. If you enter ParRates as shown, ZeroRates may differ due to rounding. See Also zero2py1d and other functions for Term Structure of Interest Rates

ret2tick

Purpose	Convert a return series to a price series						
Syntax		[TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice, RetIntervals, StartTime, <i>Method</i>)					
Arguments	RetSeries	Number of observations (NUMOBS) by number of assets (NASSETS) time series array of asset returns associated with the prices in TickSeries. The <i>i</i> 'th return is quoted for the period TickTimes(i) to TickTimes(i+1) and is not normalized by the time increment between successive price observations.					
	StartPrice	(Optional) 1-by-NASSETS vector of initial asset prices or a single scalar initial price applied to all assets. Prices start at 1 if StartPrice is not specified.					
	RetIntervals	 (Optional) Scalar or NUMOBS-by-1 vector of interval times between observations. If this argument is not specified, all intervals are assumed to have length 1. (Optional) Starting time for first observation, applied to the price series of all assets. The default is zero. 					
	StartTime						
	Method	(Optional) Character string indicating the method to convert asset returns to prices. Must be 'Simple' (default) or 'Continuous'. If Method is 'Simple', ret2tick uses simple periodic returns. If Method is 'Continuous', the function uses continuously compounded returns. Case is ignored for Method.					
Description	<pre>[TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice, RetIntervals, StartTime, Method) generates price values from the starting prices of NASSETS investments and NUMOBS incremental return observations. TickSeries is a NUMOBS+1-by-NASSETS times series array of equity prices. The first row contains the oldest observations and the last row the most recent. Observations across a given row occur at the same time for all columns. Each column is a price series of an individual asset. If Method is unspecified or 'Simple', the prices are</pre>						
	<pre>TickSeries(i+1) = TickSeries(i)*[1 + RetSeries(i)]</pre>						

```
If Method is 'Continuous', the prices are
                      TickSeries(i+1) = TickSeries(i)*exp[RetSeries(i)]
                    TickTimes is a NUMOBS+1 column vector of monotonically increasing
                    observation times associated with the prices in TickSeries. The initial time is
                    zero unless specified in StartTime, and sequential observation times occur at
                    unit increments unless specified in RetIntervals.
Examples
                    Compute the price increase of two stocks over a year's time based on three
                    incremental return observations.
                       RetSeries = [0.10 \ 0.12]
                                     0.05 0.04
                                    -0.05\ 0.05];
                       RetIntervals = [182
                                         91
                                         92];
                       StartTime = datenum('18-Dec-2000');
                       [TickSeries,TickTimes] = ret2tick(RetSeries,[],RetIntervals,...
                       StartTime)
                      TickSeries =
                           1.0000
                                      1.0000
                           1.1000
                                      1.1200
                           1.1550
                                      1.1648
                           1.0973
                                      1.2230
                      TickTimes =
                             730838
                             731020
                             731111
                             731203
                       datestr(TickTimes)
```

ret2tick

ans = 18-Dec-2000 18-Jun-2001 17-Sep-2001 18-Dec-2001

See Also

portsim, tick2ret

second

Purpose	Seconds of date or time				
Syntax	Seconds = second(Date)				
Description	Seconds = second(Date) returns the seconds given a serial date number or a date string.				
Examples	Seconds = second(738647.558427893)				
	or				
	Seconds = second('06-May-2022, 13:24:08.17')				
	returns				
	Seconds =				
	8.1700				
See Also	datevec, hour, minute				

taxedrr

Purpose	After-tax rate of return				
Syntax	Return = taxedrr(PreTaxReturn, TaxRate)				
Arguments	PreTaxReturnNominal rate of return. Enter as a decimal fraction.TaxRateTax rate. Enter as a decimal fraction.				
Description	Return = taxedrr(PreTaxReturn, TaxRate) calculates the after-tax rate of return.				
Examples	An investment has a 12% nominal rate of return and is taxed at a 30% rate. The after-tax rate of return is Return = taxedrr(0.12, 0.30)				
	Return = 0.0840				
See Also	or 8.4% effrr, irr, mirr, nomrr, xirr				

Purpose	Treasury bond parameters given Treasury bill parameters					
Syntax	[TBondMatrix, S	[TBondMatrix, Settle] = tbl2bond(TBillMatrix)				
Arguments	des Col	ix Treasury bill parameters. An n-by-5 matrix where each row describes a Treasury bill. n is the number of Treasury bills. Columns are [Maturity DaysMaturity Bid Asked AskYield] where:				
	Mat	 Maturity Maturity date, as a serial date number. Use datenum to convert date strings to serial date numbers. DaysMaturity Days to maturity, as an integer. Days to maturity is quoted on a skip-day basis; the actual number of days from settlement to maturity is DaysMaturity + 1. Bid Bid bank-discount rate: the percentage discount from face value at which the bill could be bought annualized on a simple-interest basis. A decima fraction. 				
	Day					
	Bid					
	Ask	ked	Asked bank-discount rate, as a decimal fraction.			
	Ask	kYield	Asked yield: the bond-equivalent yield from holding the bill to maturity, annualized on a simple-interest basis and assuming a 365-day year. A decimal fraction.			
Description	[TBondMatrix, Settle] = tbl2bond(TBillMatrix) restates U.S. Treasury bill market parameters in U.S. Treasury bond form as zero-coupon bonds. This function makes Treasury bills directly comparable to Treasury bonds and notes.					

tbl2bond

	TBondMatrix	Treasury bond parameters. An N-by-5 matrix where each row describes an equivalent Treasury (zero-coupon) bond. Columns are [CouponRate Maturity Bid Asked AskYield] where				
		CouponRate	Coupon rate, w	Coupon rate, which is always 0.		
		Maturity	date is the same as the Treasury bill Maturi date. Bid price based on \$100 face value. Asked price based on \$100 face value.			
		Bid				
		Asked				
		AskYield				
Examples	Given publish	hed Treasury bill market parameters for December 22, 1997				
	-	[datenum('jan 02 1998') 10 0.0526 0.0522 0.0530 datenum('feb 05 1998') 44 0.0537 0.0533 0.0544 datenum('mar 05 1998') 72 0.0529 0.0527 0.0540];				
	Execute the f	unction.				
	TBond = t	bl2bond(TBill)			
	TBond =					
		0 729760	99.854	99.855	0.053	
		0 729790 0 729820			0.0544 0.054	
			98.942		0.054	
	(Example out	put has been fo	rmatted for read	lability.)		
See Also	tr2bonds and	nds and other functions for Term Structure of Interest Rates				

Purpose	Find third Wednesday of month		
Syntax	[BeginDates, End	Dates] = thirdwednesday(Month, Year)	
Arguments	Month	Month of delivery for Eurodollar futures.	
	Year	Four-digit year of delivery for Eurodollar futures, in sequence corresponding to a month in the Month input argument.	
	Inputs can be scala	rs or n-by-1 vectors.	
Description	[BeginDates, EndDates] = thirdwednesday(Month, Year) computes the beginning and end period date for a LIBOR contract (third Wednesdays of delivery months).		
	BeginDates is the beginning of three-month period contract as specified by Month and Year.		
	EndDates is the end Year.	d of three-month period contract as specified by Month and	
	datestr. 2. The function retu	urned as serial date numbers. Convert to strings using urns duplicates if you supply identical months and years. oports dates from January 2000 to December 2099.	
Examples	in the years 2002, 2 Months = [10; Year = [2002;	10; 10];	

datestr(BeginDates)

ans =

16-Oct-2002 15-Oct-2003 20-Oct-2004

datestr(EndDates)

ans =

16-Jan-2003 15-Jan-2004 20-Jan-2005

Purpose	Thirty-second quotation to decimal		
Syntax	OutNumber = thir	rtytwo2dec(InNumber, InFraction)	
Arguments	InNumber	Scalar or vector of input numbers without fractional component.	
	InFraction	Scalar or vector of fractional portions of each element in InNumber.	
Description	OutNumber = thirtytwo2dec(InNumber, InFraction) changes the price quotation for a bond or bond future from a fraction with a denominator of 32 to a decimal.		
	OutNumber represer decimal.	nts the sum of InNumber and InFraction expressed as a	
Examples	Two bonds are quoted as 101-25 and 102-31. Convert these prices to decimal.		
	InNumber = [101; 102]; InFraction = [25; 31]		
	OutNumber = thirtytwo2dec(InNumber, InFraction)		
	OutNumber =		
	101.7813 102.9688		
See Also	dec2thirtytwo		

tick2ret

Purpose	Convert a price series to a return series		
Syntax	[RetSeries,	[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, <i>Method</i>)	
Arguments	TickSeries	Number of observations (NUMOBS) by number of assets (NASSETS) matrix of prices of equity assets. Each column is a price series of an individual asset. First row is oldest observation. Last row is most recent. Observations across a given row occur at the same time for all columns.	
	TickTimes	(Optional) NUMOBS-by-1 increasing vector of observation times associated with the prices in TickSeries. Times are serial date numbers (day units) or decimal numbers in arbitrary units (e.g., yearly). If TickTimes is empty or missing, sequential observation times from 1, 2, NUMOBS are assumed.	
	Method	(Optional) Character string indicating the method to convert prices to asset returns. Must be 'Simple' (default) or 'Continuous'. If Method is 'Simple', tick2ret computes simple periodic returns. If Method is 'Continuous', returns are continuously compounded. Case is ignored for <i>Method</i> .	
Description	<pre>[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes, Method) computes the asset returns realized between NUMOBS observations of prices of NASSETS assets. RetSeries is a (NUMOBS-1)-by-NASSETS time series array of asset returns associated with the prices in TickSeries. The i'th return is quoted for the period TickTimes(i) to TickTimes(i+1) and is not normalized by the time increment between successive price observations. If Method is unspecified or 'Simple', the returns are:</pre>		
	RetSeries(i) = TickSeries(i+1)/TickSeries(i) - 1		
	If Method is '	Continuous', the returns are:	
	RetSeries	<pre>(i) = log[TickSeries(i+1)/TickSeries(i)]</pre>	

RetIntervals is a (NUMOBS-1)-by-1 column vector of interval times between observations. If TickTimes is empty or unspecified, all intervals are assumed to have length 1.

Examples Compute the periodic returns of two stocks observed in the first, second, third, and fourth quarters.

```
TickSeries = [100 \ 80
                                    110 90
                                    115 88
                                    110 91];
                     TickTimes = [0
                                   6
                                   9
                                   12];
                      [RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)
                      RetSeries =
                          0.1000
                                    0.1250
                          0.0455
                                   -0.0222
                                    0.0341
                         -0.0435
                      RetIntervals =
                           6
                           3
                           3
See Also
                   ewstats, ret2tick
```

time2date

Purpose	Dates from time and frequency		
Syntax	Dates = time2date EndMonthRule)	e(Settle, TFactors, Compounding, Basis,	
Arguments	Settle	Settlement date. A vector of serial date numbers or date strings.	
	TFactors	A vector of time factors corresponding to the compounding value. TFactors must be equal to or greater than zero.	
	Compounding	(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default = 2. This argument determines the formula for the discount factors:	
		Compounding = 1, 2, 3, 4, 6, 12	
		<pre>Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate, and T is the time in periodic units, e.g. T = F is one year.</pre>	
		Compounding = 365	
		<pre>Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a number of days elapsed computed by basis.</pre>	
		Compounding = -1	
		Disc = $exp(-T*Z)$, where T is time in years.	

	Basis	(Optional) Day-count basis of the instrument. A vector of integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 = actual/265 (Japanese)		
	EndMonthRule	7 = actual/365 (Japanese). (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. 1 = set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.		
Description	Dates = time2date(Settle, TFactors, Compounding, Basis, EndMonthRule) computes dates corresponding to the times occurring beyond the settlement date.			
	The time2date fun	ction is the inverse of date2time.		
Examples	Show that date2time and time2date are the inverse of each other. First compute the time factors using date2time.			
	Settle = '1-Sep-2002'; Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '31-Dec-2006']);			
	Compounding = 2; Basis = 0;			
	EndMonthRule = TFactors = dat	: 1; :e2time(Settle, Dates, Compounding, Basis, EndMonthRule)		
	TFactors =			
	5.9945 6.9945 7.5738 8.6576			

time2date

```
Now use the calculated \tt TFactors in time2date and compare the calculated dates with the original set.
```

```
Dates_calc = time2date(Settle, TFactors, Compounding, Basis,...
EndMonthRule)
Dates_calc =
732555
732736
732843
733042
datestr(Dates_calc)
ans =
31-Aug-2005
28-Feb-2006
15-Jun-2006
31-Dec-2006
```

See Also cftimes, date2time

Purpose	Current date		
Syntax	Datenum = today		
Description	Datenum = today returns the current date as a serial date number.		
Examples	Datenum = today		
	returns		
	Datenum =		
	730695		
	on July 28, 2000.		
See Also	datenum, datestr, now		

tr2bonds

Purpose	Term-structure parameters given Treasury bond parameters		
Syntax	[Bonds, Prices,	Yields] =	tr2bonds(TreasuryMatrix, Settle)
Arguments	TreasuryMatrix	row describe	nd parameters. An n-by-5 matrix, where each es a Treasury bond. Columns are e Maturity Bid Asked AskYield] where
		CouponRate	Coupon rate, as a decimal fraction.
		Maturity	Maturity date, as a serial date number. Use datenum to convert date strings to serial date numbers.
		Bid	Bid price based on \$100 face value.
		Asked	Asked price based on \$100 face value.
		AskYield	Asked yield to maturity, as a decimal fraction.
	Settle	-	Date string or serial date number of the late for the analysis.
Description		-	tr2bonds(TreasuryMatrix, Settle) returns nd information, prices, and yields) sorted by

escription [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle) returns term-structure parameters (bond information, prices, and yields) sorted by ascending maturity date, given Treasury bond parameters. The formats of the output matrix and vectors meet requirements for input to the zbtprice and zbtyield zero-curve bootstrapping functions.

	Bonds	Coupon bond information. An n-by-6 matrix where each row describes a bond. Columns are [Maturity CouponRate Face Period Basis EndMonthRule] where:	
		Maturity	Maturity date of the bond, as a serial date number. Use datestr to convert serial date numbers to date strings.
		CouponRate	Coupon rate of the bond, as a decimal fraction.
		Face	Redemption or face value of the bond, always 100.
		Period	Coupons per year of the bond, always 2.
		Basis	Day-count basis of the bond, always 0 (actual/actual).
		EndMonthRule	End-of-month flag, always 1, meaning that a bond's coupon payment date is always the last day of the month.
	Prices	s Prices. A column vector containing the price of each bond in bone respectively. The number of rows (n) matches the number of rows bonds.	
	Yields	bond in bonds, i number of rows	n vector containing the yield to maturity of each respectively. The number of rows (n) matches the in bonds. If Settle is input, Yields is computed as ield to maturity. If Settle is not input, the quoted l be used.
Examples	Given p	Given published Treasury bond market parameters for December 22, 1997	
	Matrix	<pre>x =[0.0650 datenum('15-apr-1999') 101.03125 101.09375 0.056 0.05125 datenum('17-dec-1998') 99.4375 99.5 0.056 0.0625 datenum('30-jul-1998') 100.3125 100.375 0.056 0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546]</pre>	
	Execute	the function.	
	[Bond	ds, Prices, Yie	lds] = tr2bonds(Matrix)

tr2bonds

Bonds = 729840 0.06125 100 2 1 0 729966 0.0625 100 2 0 1 2 0 1 730106 0.05125 100 730225 0.065 100 2 0 1 Prices = 100.1563 100.3750 99.5000 101.0938 Yields = 0.0546 0.056 0.0563 0.0564

(Example output has been formatted for readability.)

See Also tbl2bond, zbtprice, zbtyield, and other functions for Term Structure of Interest Rates

Purpose	$\label{eq:constraint} Univariate \ GARCH(P,Q) \ parameter \ estimation \ with \ Gaussian \ innovations$		
Syntax	[Kappa, Alpha, Beta] = ugarch(U, P, Q)		
Arguments	U Single column vector of random disturbances, i.e., the residuals or innovations (ε_t), of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series U is assumed to follow a GARCH(P,Q) process.		
	 P Non-negative, scalar integer representing a model order of the GARCH process. P is the number of lags of the conditional variance. P can be zero; when P = 0, a GARCH(0,Q) process is actually an ARCH(Q) process. 		
	Q Positive, scalar integer representing a model order of the GARCH process. Q is the number of lags of the squared innovations.		
Description	[Kappa, Alpha, Beta] = ugarch(U, P, Q) computes estimated univariate $GARCH(P,Q)$ parameters with Gaussian innovations.		
	Kappa is the estimated scalar constant term (κ) of the GARCH process.		
	Alpha is a P-by-1 vector of estimated coefficients, where P is the number of lags of the conditional variance included in the GARCH process.		
	Beta is a Q-by-1 vector of estimated coefficients, where Q is the number of lags of the squared innovations included in the GARCH process.		
	The time-conditional variance, $\sigma_t{}^2$, of a GARCH(P,Q) process is modeled as		
	$\sigma_t^2 = \kappa + \sum_{i=1}^r \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^{\varphi} \beta_j \varepsilon_{t-j}^2$		
	where $lpha$ represents the argument Alpha, eta represents Beta, and the		

$$\sum_{i=1}^{P} a_{i} + \sum_{j=1}^{Q} \beta_{j} < 1$$

$$\kappa > 0$$

$$a_{i} \ge 0 \qquad i = 1, 2, ..., P$$

$$\beta_{j} \ge 0 \qquad j = 1, 2, ..., Q$$

Note that U is a vector of residuals or innovations (ε_t) of an econometric model, representing a mean-zero, discrete-time stochastic process.

P

Although σ_t^2 is generated using the equation above, ε_t and σ_t^2 are related as

 $\varepsilon_t = \sigma_t v_t$

where $\{v_t\}$ is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Note ugarch corresponds generally to the GARCH Toolbox function garchfit. The GARCH Toolbox provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information, see the GARCH Toolbox User's Guide or the financial products Web page at http://www.mathworks.com/products/finprod/.

Examples	See ugarchsim for an example of a $\ensuremath{GARCH}(\ensuremath{P,Q})$ process.
See Also	ugarchpred, ugarchsim, and the GARCH Toolbox function garchfit
References	James D. Hamilton, Time Series Analysis, Princeton University Press, 1994

Purpose	Log-likelihood objective function of univariate $\ensuremath{\mathrm{GARCH}}(P,\!Q)$ processes with Gaussian innovations	
Syntax	LogLikeliho	ood = ugarchllf(Parameters, U, P, Q)
Arguments	Parameters	(1 + P + Q)- by-1 column vector of GARCH(P,Q) process parameters. The first element is the scalar constant term K of the GARCH process; the next P elements are coefficients associated with the P lags of the conditional variance terms; the next Q elements are coefficients associated with the Q lags of the squared innovations terms.
	U	Single column vector of random disturbances, i.e., the residuals or innovations (\mathcal{E}_t) , of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series U is assumed to follow a GARCH(P,Q) process.
	Ρ	Nonnegative, scalar integer representing a model order of the GARCH process. P is the number of lags of the conditional variance. P can be zero; when $P = 0$, a GARCH(0,Q) process is actually an ARCH(Q) process.
	Q	Positive, scalar integer representing a model order of the GARCH process. Q is the number of lags of the squared innovations.
Description	 LogLikelihood = ugarchllf(Parameters, U, P, Q) computes the log-likelihood objective function of univariate GARCH(P,Q) processes with Gaussian innovations. LogLikelihood is a scalar value of the GARCH(P,Q) log-likelihood objective function given the input arguments. This function is meant to be optimized via the fmincon function of the Optimization Toolbox. fmincon is a minimization routine. To maximize the log-likelihood function, the LogLikelihood output parameter is actually the negative of what is formally presented in most time series or econometrics references. 	

The time-conditional variance, σ_t^2 , of a GARCH(P,Q) process is modeled as

$$\sigma_t^2 = \kappa + \sum_{i=1}^r \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^{\varphi} \beta_j \varepsilon_{t-j}^2$$

where α represents the argument Alpha, and β represents Beta.

U is a vector of residuals or innovations (ε_t) representing a mean-zero, discrete time stochastic process. Although σ_t^2 is generated via the equation above, ε_t and σ_t^2 are related as

 $\varepsilon_t = \sigma_t v_t$

where $\{v_t\}$ is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Since ugarch11f is really just a helper function, no argument checking is performed. This function is not meant to be called directly from the command line.

Note The GARCH Toolbox provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information see the *GARCH Toolbox User's Guide* or the financial products Web page at http://www.mathworks.com/products/finprod/.

See Also ugarch, ugarchpred, ugarchsim

Purpose	Forecast conditional variance of univariate GARCH(P,Q) processes		
Syntax		[VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta, NumPeriods)	
Arguments	U	Single column vector of random disturbances, i.e., the residuals or innovations (\mathcal{E}_t), of an econometric model representing a mean-zero, discrete-time stochastic process. The innovations time series U is assumed to follow a GARCH(P,Q) process.	
	Карра	Scalar constant term κ of the GARCH process.	
	Alpha	P-by-1 vector of coefficients, where P is the number of lags of the conditional variance included in the GARCH process. Alpha can be an empty matrix, in which case P is assumed 0; when $P = 0$, a GARCH(0,Q) process is actually an ARCH(Q) process.	
	Beta	Q-by-1 vector of coefficients, where Q is the number of lags of the squared innovations included in the GARCH process.	
	NumPeriods	Positive, scalar integer representing the forecast horizon of interest, expressed in periods compatible with the sampling frequency of the input innovations column vector U.	
Description	[VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta, NumPeriods) forecasts the conditional variance of univariate GARCH(P,Q) processes. VarianceForecast is a number of periods (NUMPERIODS)-by-1 vector of the minimum mean-square error forecast of the conditional variance of the innovations time series vector U (i.e., \mathcal{E}_t). The first element contains the 1-period-ahead forecast, the second element contains the 2-period-ahead forecast, and so on. Thus, if a forecast horizon greater than 1 is specified (NUMPERIODS > 1), the forecasts of all intermediate horizons are returned as well. In this case, the last element contains the variance forecast of the specified horizon, NumPeriods from the most recent observation in U. H is a vector of the conditional variances (σ_t^2) corresponding to the innovations vector U. It is inferred from the innovations U, and is a reconstruction of the		

"past" conditional variances, whereas the VarianceForecast output represents the projection of conditional variances into the "future." This sequence is based on setting pre-sample values of σ_t^2 to the unconditional variance of the { \mathcal{E}_t } process. H is a single column vector of the same length as the input innovations vector U.

The time-conditional variance, σ_t^2 , of a GARCH(P,Q) process is modeled as

$$\sigma_t^2 = \kappa + \sum_{i=1}^r \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^{\varphi} \beta_j \varepsilon_{t-j}^2$$

where α represents the argument Alpha, β represents Beta, and the GARCH(P,Q) coefficients { κ, α, β } are subject to the following constraints.

$$\sum_{i=1}^{P} a_{i} + \sum_{j=1}^{Q} \beta_{j} < 1$$

$$\kappa > 0$$

$$a_{i} \ge 0 \qquad i = 1, 2, ..., P$$

$$\beta_{j} \ge 0 \qquad j = 1, 2, ..., Q$$

Note that U is a vector of residuals or innovations (\mathcal{E}_t) of an econometric model, representing a mean-zero, discrete-time stochastic process.

Although σ_t^2 is generated using the equation above, ε_t and σ_t^2 are related as

 $\varepsilon_t = \sigma_t v_t$

where $\{v_t\}$ is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Note ugarchpred corresponds generally to the GARCH Toolbox function garchpred. The GARCH Toolbox provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information see the *GARCH Toolbox User's Guide* or the financial products Web page at http://www.mathworks.com/products/finprod/.

Examples	See ugarchsim for an example of forecasting the conditional variance of a univariate ${\rm GARCH}(P,Q)$ process.
See Also	ugarch, ugarchsim, and the GARCH Toolbox function garchpred

ugarchsim

Purpose	Simulate a univariate GARCH(P,Q) process with Gaussian innovations		
Syntax	[U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples)		
Arguments	Карра	Scalar constant term κ of the GARCH process.	
	Alpha	P-by-1 vector of coefficients, where P is the number of lags of the conditional variance included in the GARCH process. Alpha can be an empty matrix, in which case P is assumed 0; when $P = 0$, a GARCH(0,Q) process is actually an ARCH(Q) process.	
	Beta	Q-by-1 vector of coefficients, where Q is the number of lags of the squared innovations included in the GARCH process.	
	NumSamples	Positive, scalar integer indicating the number of samples of the innovations U and conditional variance H (see below) to simulate.	
Description	[U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples) simulates a univariate $GARCH(P,Q)$ process with Gaussian innovations.		
	U is a number of samples (NUMSAMPLES)-by-1 vector of innovations (\mathcal{E}_t) , representing a mean-zero, discrete-time stochastic process. The innovations time series U is designed to follow the GARCH(P,Q) process specified by the inputs Kappa, Alpha, and Beta.		
	H is a NUMSAMPLES-by-1 vector of the conditional variances (σ_t^2) corresponding to the innovations vector U. Note that U and H are the same length, and form a "matching" pair of vectors. As shown in the following equation, σ_t^2 (i.e., H(t)) represents the time series inferred from the innovations time series { ε_t } (i.e., U).		
	The time-con	ditional variance, ${f \sigma_t}^2$, of a GARCH(P,Q) process is modeled as	
	$\sigma_t^2 = \kappa + \sum_{i}$	$\sum_{i=1}^{r} \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^{\varphi} \beta_j \varepsilon_{t-j}^2$	
		esents the argument Alpha, β represents Beta, and the coefficients { κ , α , β } are subject to the following constraints.	

 $\sum_{i=1}^{P} a_i + \sum_{j=1}^{Q} \beta_j < 1$ $\kappa > 0$ $a_i \ge 0 \qquad i = 1, 2, ..., P$ $\beta_j \ge 0 \qquad j = 1, 2, ..., Q$

Note that U is a vector of residuals or innovations (\mathcal{E}_t) of an econometric model, representing a mean-zero, discrete-time stochastic process.

Although σ_t^2 is generated using the equation above, ε_t and σ_t^2 are related as

 $\varepsilon_t = \sigma_t v_t$

where $\{v_t\}$ is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

The output vectors U and H are designed to be steady-state sequences in which transients have arbitrarily small effect. The (arbitrary) metric used by ugarchsim strips the first N samples of U and H such that the sum of the GARCH coefficients, excluding Kappa, raised to the Nth power, does not exceed 0.01.

 $0.01 = (sum(Alpha) + sum(Beta))^N$

Thus

N = log(0.01)/log((sum(Alpha) + sum(Beta)))

Note ugarchsim corresponds generally to the GARCH Toolbox function garchsim. The GARCH Toolbox provides a comprehensive and integrated computing environment for the analysis of volatility in time series. For information see the *GARCH Toolbox User's Guide* or the financial products Web page at http://www.mathworks.com/products/finprod/.

```
Examples
                  This example simulates a GARCH(P,Q) process with P = 2 and Q = 1.
                  % Set the random number generator seed for reproducability.
                  randn('seed', 10)
                  % Set the simulation parameters of GARCH(P,Q) = GARCH(2,1) process.
                  Kappa = 0.25;
                                     %a positive scalar.
                  Alpha = [0.2 \ 0.1]'; %a column vector of nonnegative numbers (P = 2).
                  Beta = 0.4;
                                     % Q = 1.
                  NumSamples = 500; % number of samples to simulate.
                  % Now simulate the process.
                  [U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples);
                  % Estimate the process parameters.
                  P = 2; % Model order P (P = length of Alpha).
                  Q = 1; % Model order Q (Q = length of Beta).
                  [k, a, b] = ugarch(U, P, Q);
                  disp(' ')
                  disp(' Estimated Coefficients:')
                  disp(' -----')
                  disp([k; a; b])
                  disp(' ')
                  % Forecast the conditional variance using the estimated
                  % coefficients.
                  NumPeriods = 10; % Forecast out to 10 periods.
                  [VarianceForecast, H1] = ugarchpred(U, k, a, b, NumPeriods);
                  disp(' Variance Forecasts:')
                  disp(' -----')
                  disp(VarianceForecast)
                  disp(' ')
                  When the above code is executed, the screen output looks like the display
```

shown.

Constraints

Nonlinear	constraints: do not		xist
Number of	linear inequality constra	aints:	1
Number of	linear equality constrain	nts:	0
Number of	lower bound constraints:		4
Number of	upper bound constraints:		0
Algorithm	selected		
medium	scale		

			max		Directional	
Iter	F-count	f(x)	constraint	Step-size	derivative	Procedure
1	5	699.185	-0.125	1	-2.97e+006	
2	22	658.224	-0.1249	0.000488	-64.6	
3	28	610.181	0	1	-49.4	
4	35	590.888	0	0.5	-38.9	
5	42	583.961	-0.03317	0.5	-29.8	
6	49	583.224	-0.02756	0.5	-31.8	
7	57	582.947	-0.02067	0.25	-7.28	
8	63	578.182	0	1	-2.43	
9	71	578.138	-0.09145	0.25	-0.55	
10	77	577.898	-0.04452	1	-0.148	
11	84	577.882	-0.06128	0.5	-0.0488	
12	90	577.859	-0.07117	1	-0.000758	
13	96	577.858	-0.07033	1	-0.000305	Hessian modified
14	102	577.858	-0.07042	1	-3.32e-005	Hessian modified
15	108	577.858	-0.0707	1	-1.29e-006	Hessian modified
16	114	577.858	-0.07077	1	-1.29e-007	Hessian modified
17	120	577.858	-0.07081	1	-1.97e-007	Hessian modified

ugarchsim

Optimization Converged Successfully Magnitude of directional derivative in search direction less than 2*options.TolFun and maximum constraint violation is less than options.TolCon No Active Constraints Estimated Coefficients: 0.2520 0.0708 0.1623 0.4000 Variance Forecasts: 1.3243 0.9594 0.9186 0.8402 0.7966 0.7634 0.7407 0.7246 0.7133 0.7054 ugarch, ugarchpred, and the GARCH Toolbox function garchsim

References James D. Hamilton, *Time Series Analysis*, Princeton University Press, 1994

See Also

Day of the week		
[DayNum, Da	yString] = weekday(Date)	
[DayNum, DayString] = weekday(Date) returns the day of the week in numeric and string form given the date as a serial date number or date string. The days of the week have these values.		
DayNum	DayString	
1	Sun	
2	Mon	
3	Tue	
4	Wed	
5	Thu	
6	Fri	
	[DayNum, Da [DayNum, Da numeric and The days of t DayNum 1 2 3 4 5	

7

Sat

Note This function now ships with basic MATLAB. It originally shipped only with the Financial Toolbox. This description remains here for your convenience.

weekday

```
Examples [DayNum, DayString] = weekday(730845)

or

[DayNum, DayString] = weekday('25-Dec-2000')

returns

DayNum =

2

DayString =

Mon

See Also datenum, datestr, datevec, day
```

Purpose	Number of working days between dates		
Syntax	Days = wrkdydif(StartDate, EndDate, Holidays)		
Description	Days = wrkdydif(StartDate, EndDate, Holidays) returns the number of working days between dates StartDate and EndDate. Holidays is the number of holidays between the given dates, an integer. Enter dates as serial date numbers or date strings.		
Examples	Days = wrkdydif('9/1/2000', '9/11/2000', 1)		
	or		
	Days = wrkdydif(730730, 730740, 1)		
	returns		
	Days =		
	6		
See Also	busdate, datewrkdy, days360, days365, daysact, daysdif, holidays, yearfrac		

x2mdate

Purpose	Excel serial date number to MATLAB serial date number		
Syntax	MATLABDate = x2mc	date(ExcelDateNu	umber, Convention)
Arguments	ExcelDateNumber Convention		ar of Excel serial date numbers.
	Convention	Convention = 0	date system. A vector or scalar. When (default), the Excel 1900 date system is Convention = 1, the Excel 1904 date
		number 1 corres	0 date system, the Excel serial date ponds to January 1, 1900 A.D. In the system, date number 0 is January 1,
	Vector arguments n	nust have consiste	ent dimensions.
Description	DateNumber = $x2mdate(ExcelDateNumber, Convention)$ converts Excel serial date numbers to MATLAB serial date numbers. MATLAB date numbers start with 1 = January 1, 0000 A.D., hence there is a difference of 693961 relative to the 1900 date system, or 695422 relative to the 1904 date system. This function is useful with MATLAB Excel Link.		
Examples	Given Excel date nu	umbers in the 190	4 system
	ExDates = [354	23 35788 3615	3];
	convert them to MA	ATLAB date numb	bers
	MATLABDate = x	2mdate(ExDates,	1)
	MATLABDate =		
	730845	731210	731575
	and then to date str	rings.	

datestr(MATLABDate)

ans =

25-Dec-2000 25-Dec-2001 25-Dec-2002

See Also

datenum, datestr, m2xdate

xirr

Purpose	Internal rate of return for nonperiodic cash flow		
Syntax	Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations)		
Arguments	CashFlow	A vector of nonperiodic cash flows. Include the initial investment as the initial cash flow value (a negative number).	
	CashFlowDates	A vector of dates on which the cash flows occur. Enter dates as serial date numbers or date strings.	
	Guess	(Optional) Initial estimate of the expected return. Default = $0.1 (10\%)$.	
	MaxIterations	(Optional) Number of iterations used by Newton's method to solve for Return. Default = 50.	
Description		CashFlow, CashFlowDates, Guess, MaxIterations) rnal rate of return for a schedule of nonperiodic cash flows.	
Examples	An investment of \$10,000 returns this nonperiodic cash flow. The original investment and its date are included.		
	Cash flow	Dates	
	(\$10000)	January 12, 2000	
	\$2500	February 14, 2001	
	\$2000	March 3, 2001	
	\$3000	June 14, 2001	
	\$4000	December 1, 2001	
	To calculate the	internal rate of return for this nonperiodic cash flow	
		[-10000, 2500, 2000, 3000, 4000]; es = ['01/12/2000' '02/14/2001' '03/03/2001'	

'06/14/2001' '12/01/2001'];

	Return = xirr(CashFlow, CashFlowDates)
	returns
	Return = 0.1009 (or 10.09%)
See Also	fvvar, irr, mirr, pvvar
References	Sharpe and Alexander, Investments, 4th edition, page 463.

year

Purpose	Year of date
Syntax	Year = year(Date)
Description	Year = year(Date) returns the year of a serial date number or a date string.
Examples	Year = year(731798.776)
	or
	Year = year('05-Aug-2003')
	returns
	Year =
	2003
See Also	datevec, day, month, yeardays

yeardays

Purpose	Number of days in year		
Syntax	Days = yearda	ys(Year, Basis)	
Arguments	Year Basis	Enter as a four-digit integer. (Optional) Day-count basis of the instrument. A vector of integers. 0 = actual/actual (default), 1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 = actual/365 (Japanese).	
Description	Days = yeardays(Year, Basis) returns the number of days in the given year, based upon the day-count basis.		
Examples	Days = year Days = 366	rdays(2000)	
	Days = year	rdays(2000, 1)	
	Days =		
	360		
See Also	days360, days3	65, daysact, year, yearfrac	

yearfrac

Purpose	Fraction of year between dates		
Syntax	Fraction = yearfrac(StartDate, EndDate, Basis)		
Arguments	StartDate EndDate Basis	Enter as serial date numbers or date strings. Enter as serial date numbers or date strings. (Optional) Day-count basis of the instrument. A vector of integers. 0 = actual/actual (default), 1 = 30/360 (SIA),	
		2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 = actual/365 (Japanese).	
	-	arguments must be number of instruments (NUMINST) by 1 or conforming vectors or scalar arguments.	
Description	Fraction = yearfrac(StartDate, EndDate, Basis) returns a fraction based on the number of days between dates StartDate and EndDate using the given day-count basis. If EndDate is earlier than StartDate, Fraction is negative.		
Examples	Fraction	= yearfrac('14 mar 01', '14 sep 01', 0)	
	Fraction =		
	0.504	11	
	Fraction	= yearfrac('14 mar 01', '14 sep 01', 1)	
	Fraction	=	
	0.500	00	
See Also	days360, day	s365, daysact, daysdif, months, wrkdydif, yeardays	

Purpose	Yield of discounted security		
Syntax	Yield = ylddisc(Settle, Maturity, Face, Price, Basis)		
Arguments	Settle Settlement date. Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.		
	Maturity	Maturity date. Enter as serial date number or date string.	
	Face	Redemption (par, face) value.	
	Price	Discounted price of the security.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).	
Description	Yield = ylddisc(Settle, Maturity, Face, Price, Basis) finds the yield of a discounted security.		
Examples	Using the data		
	<pre>Settle = '10/14/2000'; Maturity = '03/17/2001'; Face = 100; Price = 96.28; Basis = 2;</pre>		
	Yield = ylddisc(Settle, Maturity, Face, Price, Basis)		
	returns		
	Yield =		
	(0.0903 (or 9.03%)	
See Also	acrudisc, bn	dprice, bndyield, prdisc, yldmat, yldtbill	
References	Mayle, <i>Standard Securities Calculation Methods</i> , Volumes I-II, 3rd edition. Formula 1.		

yldmat

Purpose	Yield with interest at maturity		
Syntax	Yield = yldr Basis)	mat(Settle, Maturity, Issue, Face, Price, CouponRate,	
Arguments	Settle	Settlement date. Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.	
	Maturity	Maturity date. Enter as serial date number or date string.	
	Issue	Issue date. Enter as serial date number or date string.	
	Face	Redemption (par, face) value.	
	Price	Price of the security.	
	CouponRate	Coupon rate. Enter as decimal fraction.	
	Basis	(Optional) Day-count basis of the instrument. A vector of integers. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).	
Description	Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate, Basis) returns the yield of a security paying interest at maturity.		
Examples	Using the dat	a	
	<pre>Settle = '02/07/2000'; Maturity = '04/13/2000'; Issue = '10/11/1999'; Face = 100; Price = 99.98; CouponRate = 0.0608; Basis = 1; Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate, Basis) returns Yield =</pre>		

 $0.0607 (or \ 6.07\%)$

See Also acrubond, bndprice, bndyield, prmat, ylddisc, yldtbill

References Mayle, *Standard Securities Calculation Methods*, Volumes I-II, 3rd edition. Formula 3.

yldtbill

Purpose	Yield of Treasury bill			
Syntax	Yield = yld	Yield = yldtbill(Settle, Maturity, Face, Price)		
Arguments	Settle Settlement date. Enter as serial date number or date string. Settle must be earlier than or equal to Maturity.			
	Maturity	Maturity date. Enter as serial date number or date string.		
	Face	Redemption (par, face) value.		
	Price	Price of the Treasury bill.		
Description	Yield = yldtbill(Settle, Maturity, Face, Price) returns the yield for a Treasury bill.			
Examples	The settlement date of a Treasury bill is February 10, 2000, the maturity date is August 6, 2000, the par value is \$1000, and the price is \$981.36. Using this data			
	Yield = y	Yield = yldtbill('2/10/2000', '8/6/2000', 1000, 981.36)		
	returns			
	Yield =			
	(0.0384 (or 3.84%)		
See Also	beytbill,bn	dyield, prtbill, yldmat		
References	Bodie, Kane,	and Marcus, Investments, pages 41-43.		

Purpose	Zero curve bootstrapping from coupon bond data given price		
Syntax	[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle, OutputCompounding)		
Arguments	Bonds	curve. An n-by describes a bo the rest are op	information used to generate the zero y-2 to n-by-6 matrix where each row nd. The first two columns are required; otional but must be added in order. All must have the same number of columns.
		Columns are [Maturity Co EndMonthRule	uponRate Face Period Basis] where
		Maturity	Maturity date of the bond, as a serial date number. Use datenum to convert date strings to serial date numbers.
		CouponRate	Coupon rate of the bond, as a decimal fraction.
		Face	(Optional) Redemption or face value of the bond. Default = 100.
		Period	(Optional) Coupons per year of the bond, as an integer. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
		Basis	(Optional) Day-count basis of the bond: 0 = actual/actual (default), 1 = 30/360 (SIA), $2 = actual/360, 3 = actual/365,$ 4 = 30/360 (PSA), $5 = 30/360$ (ISDA), 6 = 30/360 (European), 7 = actual/365 (Japanese).

	EndMonthRule	(Optional) End-of-month flag. This flag applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore flag, meaning that a bond's coupon payment date is always the same day of the month. 1 = set flag (default), meaning that a bond's coupon payment date is always the last day of the month.
Prices	without accrue	or containing the clean price (price d interest) of each bond in Bonds, ne number of rows (n) must match the s in Bonds.
Settle	represents time	e, as a scalar serial date number. This e zero for deriving the zero curve, and it e common settlement date for all the
OutputCompounding	frequency per y	alar that sets the compounding year for the output zero rates in owed values are:
	1 annual c	ompounding
	2 semiann	ual compounding (default)
	3 compoun	ding three times per year
	1	nding three times per year y compounding
	4 quarterly	
	4 quarterly 6 bimonth	y compounding

Description [ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle, OutputCompounding) uses the bootstrap method to return a zero curve given a portfolio of coupon bonds and their prices. A zero curve consists of the yields to maturity for a portfolio of theoretical zero-coupon bonds that are derived from the input Bonds portfolio. The bootstrap method that this function uses does *not* require alignment among the cash-flow dates of the bonds in the input portfolio. It uses theoretical par bond arbitrage and yield interpolation to derive all zero rates. For best results, use a portfolio of at least 30 bonds evenly spaced across the investment horizon.

ZeroRates An m-by-1 vector of decimal fractions that are the implied zero rates for each point along the investment horizon represented by CurveDates; m is the number of bonds of unique maturity dates. In aggregate, the rates in ZeroRates constitute a zero curve.

If more than one bond has the same maturity date, <code>zbtprice</code> returns the mean zero rate for that maturity.

CurveDates An m-by-1 vector of unique maturity dates (as serial date numbers) that correspond to the zero rates in ZeroRates; m is the number of bonds of different maturity dates. These dates begin with the earliest maturity date and end with the latest maturity date Maturity in the Bonds matrix.

Examples Given data and prices for 12 coupon bonds, two with the same maturity date; and given the common settlement date

Bonds =	[datenum('6/1/1998')	0.0475	100	2	0	0;
	datenum('7/1/2000')	0.06	100	2	0	0;
	datenum('7/1/2000')	0.09375	100	6	1	0;
	datenum('6/30/2001')	0.05125	100	1	3	1;
	datenum('4/15/2002')	0.07125	100	4	1	0;
	datenum('1/15/2000')	0.065	100	2	0	0;
	datenum('9/1/1999')	0.08	100	3	3	0;
	datenum('4/30/2001')	0.05875	100	2	0	0;
	datenum('11/15/1999')	0.07125	100	2	0	0;
	datenum('6/30/2000')	0.07	100	2	3	1;
	datenum('7/1/2001')	0.0525	100	2	3	0;
	datenum('4/30/2002')	0.07	100	2	0	0];
Prices =	[99.375;					

Prices = [99.375; 99.875; 105.75 ; 96.875; 103.625;

zbtprice

101.125; 103.125; 99.375; 101.0 ; 101.25 ; 96.375; 102.75];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function

```
[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,...
OutputCompounding)
```

which returns the zero curve at the maturity dates. Note the mean zero rate for the two bonds with the same maturity date*.

ZeroRates =

0.0616
0.0609
0.0658
0.0590
0.0648
0.0655*
0.0606
0.0601
0.0642
0.0621
0.0627

CurveDates =

729907 (serial date number for 01-Jun-1998)
730364 (01-Sep-1999)
730439 (15-Nov-1999)
730500 (15-Jan-2000)

730667	(30-Jun-2000)
730668	(01-Jul-2000)*
730971	(30-Apr-2001)
731032	(30-Jun-2001)
731033	(01-Jul-2001)
731321	(15-Apr-2002)
731336	(30-Apr-2002)

See Also zbtyield and other functions for Term Structure of Interest Rates

References Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. *The Handbook of Fixed Income Securities.* 4th ed. New York: Irwin Professional Publishing. 1995.

McEnally, Richard W. and James V. Jordan. "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. "Calculating Zero Coupon Rates." *Swap and Derivative Financing*. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional Publishing. 1994.

zbtyield

Purpose	Zero curve bootstrapping from coupon bond data given yield		
Syntax	[ZeroRates, Curvel OutputCompoundi		ield(Bonds, Yields, Settle,
Arguments	Bonds	curve. An n-by describes a bot the rest are op rows in Bonds Columns are	information used to generate the zero 7-2 to n-by-6 matrix where each row nd. The first two columns are required; otional but must be added in order. All must have the same number of columns. uponRate Face Period Basis] where
		Maturity	Maturity date of the bond, as a serial date number. Use datenum to convert date strings to serial date numbers.
		CouponRate	Coupon rate of the bond, as a decimal fraction.
		Face	(Optional) Redemption or face value of the bond. Default = 100.
		Period	(Optional) Coupons per year of the bond, as an integer. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
		Basis	(Optional) Day-count basis of the bond. 0 = actual/actual (default), 1 = 30/360 (SIA), $2 = actual/360, 3 = actual/365,$ 4 = 30/360 (PSA), $5 = 30/360$ (ISDA), 6 = 30/360 (European), 7 = actual/265 (Lapapose)

7 = actual/365 (Japanese).

	EndMo	nthRule	(Optional) End-of-month flag. This flag applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore flag, meaning that a bond's coupon payment date is always the same day of the month. 1 = set flag (default), meaning that a bond's coupon payment date is always the last day of the month.
Yields	bond	in Bonds,	r containing the yield to maturity of each respectively. The number of rows (n) e number of rows in Bonds.
Settle	repres	sents time mally the	e, as a scalar serial date number. This e zero for deriving the zero curve, and it e common settlement date for all the
OutputCompounding	freque	ency per y	alar that sets the compounding year for the output zero rates in owed values are:
	1	annual c	ompounding
	2	semiann	ual compounding (default)
	3	compoun	ding three times per year
	4	quarterly	y compounding
	6	bimonth	ly compounding
	12	monthly	compounding
	-1	continuo	us compounding

Description [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle, OutputCompounding) uses the bootstrap method to return a zero curve given a portfolio of coupon bonds and their yields. A zero curve consists of the yields to maturity for a portfolio of theoretical zero-coupon bonds that are derived from the input Bonds portfolio. The bootstrap method that this function uses does *not* require alignment among the cash-flow dates of the bonds in the input

zbtyield

portfolio. It uses theoretical par bond arbitrage and yield interpolation to derive all zero rates. For best results, use a portfolio of at least 30 bonds evenly spaced across the investment horizon.

ZeroRates An m-by-1 vector of decimal fractions that are the implied zero rates for each point along the investment horizon represented by CurveDates; m is the number of bonds of different maturity dates. In aggregate, the rates in ZeroRates constitute a zero curve.

If more than one bond has the same maturity date, zbtyield returns the mean zero rate for that maturity.

CurveDates An m-by-1 vector of unique maturity dates (as serial date numbers) that correspond to the zero rates in ZeroRates; m is the number of bonds of different maturity dates. These dates begin with the earliest maturity date and end with the latest maturity date Maturity in the Bonds matrix. Use datestr to convert serial date numbers to date strings.

Examples Given data and yields to maturity for 12 coupon bonds, two with the same maturity date; and given the common settlement date

Bonds =	[datenum('6/1/1998')	0.0475	100	2	0	0;
	datenum('7/1/2000')	0.06	100	2	0	0;
	datenum('7/1/2000')	0.09375	100	6	1	0;
	datenum('6/30/2001')	0.05125	100	1	3	1;
	datenum('4/15/2002')	0.07125	100	4	1	0;
	datenum('1/15/2000')	0.065	100	2	0	0;
	datenum('9/1/1999')	0.08	100	3	3	0;
	datenum('4/30/2001')	0.05875	100	2	0	0;
	datenum('11/15/1999')	0.07125	100	2	0	0;
	datenum('6/30/2000')	0.07	100	2	3	1;
	datenum('7/1/2001')	0.0525	100	2	3	0;
	datenum('4/30/2002')	0.07	100	2	0	0];

Yields = [0.0616 0.0605 0.0687 0.0612 0.0615 0.0591 0.0603 0.0608 0.0655 0.0646 0.0641 0.0627];

Settle = datenum('12/18/1997');

Set semiannual compounding for the zero curve.

OutputCompounding = 2;

Execute the function

ZeroRates =

```
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,...
OutputCompounding)
```

which returns the zero curve at the maturity dates. Note the mean zero rate for the two bonds with the same maturity date*.

0.0616 0.0575 0.0692 0.0613 0.0616 0.0596* 0.0606 0.0659 0.0650 0.0607 0.0628

CurveDates =

729907 (serial date number for 01-Jun-1998)
730364 (01-Sep-1999)
730439 (15-Nov-1999)
730500 (15-Jan-2000)

	730667(30-Jun-2000)730668(01-Jul-2000)*730971(30-Apr-2001)731032(30-Jun-2001)731033(01-Jul-2001)731321(15-Apr-2002)731336(30-Apr-2002)		
See Also	zbtprice and other functions for Term Structure of Interest Rates		
References	Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. <i>The Handbook of Fixed Income Securities</i> . 4th ed. New York: Irwin Professional Publishing. 1995.		
	McEnally, Richard W. and James V. Jordan. "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid.		
	Das, Satyajit. "Calculating Zero Coupon Rates." <i>Swap and Derivative Financing</i> . Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional Publishing. 1994.		

Purpose	Discount curve giv	Discount curve given a zero curve		
Syntax	[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle, Compounding, Basis)			
Arguments	ZeroRates	A number of bonds (NUMBONDS) by 1 vector of annualized zero rates, as decimal fractions. In aggregate, the rates constitute an implied zero curve for the investment horizon represented by CurveDates.		
	CurveDates	A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the zero rates.		
	Settle	A serial date number that is the common settlement date for the zero rates; i.e., the settlement date for the bonds from which the zero curve was bootstrapped.		
	Compounding	(Optional) A scalar that indicates the compounding frequency per year used for annualizing the input zero rates in ZeroRates. Allowed values are:		
		1 annual compounding		
		2 semiannual compounding (default)		
		3 compounding three times per year		
		4 quarterly compounding		
		6 bimonthly compounding		
		12 monthly compounding		
		365 daily compounding		
		-1 continuous compounding		
	Basis	(Optional) Day-count basis used for annualizing the input zero rates. $0 = \text{actual/actual}$ (default), $1 = 30/360$ (SIA), $2 = \text{actual/360}$, $3 = \text{actual/365}$, $4 = 30/360$ (PSA), $5 = 30/360$ (ISDA), $6 = 30/360$ (European), $7 = \text{actual/365}$ (Japanese).		

Description [DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle, Compounding, Basis) returns a discount curve given a zero curve and its maturity dates.

- DiscRates A NUMBONDS-by-1 vector of discount factors, as decimal fractions. In aggregate, the factors in constitute a discount curve for the investment horizon represented by CurveDates.
- CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the discount rates. This vector is the same as the input vector CurveDates.
- **Examples** Given a zero curve over a set of maturity dates and a settlement date

ZeroRates = [0.0464 0.0509 0.0524 0.0525 0.0531 0.0525 0.0530 0.0531 0.0531 0.0549

0.0536];

Settle = datenum('03-Nov-2000');

The zero curve was compounded daily on an actual/365 basis.

```
InputCompounding = 365;
InputBasis = 3;
```

Execute the function

```
[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...
Settle, Compounding, Basis)
```

which returns the discount curve DiscRates at the maturity dates CurveDates.

DiscRates =

0.9996 0.9947 0.9896 0.9866 0.9826 0.9787 0.9745 0.9665 0.9552 0.9466 CurveDates = 730796 730831 730866 730887 730914 730943 730971 731027 731098 731167

For readability, ZeroRates and DiscRates are shown here only to the basis point. However, MATLAB computed them at full precision. If you enter ZeroRates as shown, DiscRates may differ due to rounding.

See Also disc2zero and other functions for Term Structure of Interest Rates

zero2fwd

Purpose	Forward curve given a zero curve		
Syntax	[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle, Compounding, Basis		
Arguments	ZeroRates A number of bonds (NUMBONDS) by 1 vector of annualize zero rates, as decimal fractions. In aggregate, the rates constitute an implied zero curve for the investment horizon represented by CurveDates. The first element pertains to forward rates from the settlement date to th first curve date.		
	CurveDates	A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the zero rates.	
	Settle	A serial date number that is the common settlement date for the zero rates.	
	Compounding	(Optional) A scalar that sets the compounding frequency per year used to annualize the input zero rates and the output implied forward rates.Allowed values are:	
		1 annual compounding	
		2 semiannual compounding (default)	
		3 compounding three times per year	
		4 quarterly compounding	
		6 bimonthly compounding	
		12 monthly compounding	
		365 daily compounding	
		-1 continuous compounding	
	Basis	(Optional) Day-count basis used to construct the input zero and output implied forward rate curves. 0 = actual/actual (default), 1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 = actual/365 (Japanese).	

Description	[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle, Compounding, Basis) returns an implied forward rate curve given a zero curve and its maturity dates.		
	ForwardRates	A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the rates in ForwardRates constitute a forward curve over the dates in CurveDates.	
	CurveDates	A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the forward rates. This vector is the same as the input vector CurveDates.	
Examples	Given a zero curve over a set of maturity dates, a settlement date, and a compounding rate, compute the forward rate curve.		
	ZeroRates	= [0.0458 0.0502 0.0518 0.0519 0.0524 0.0519 0.0523 0.0525 0.0541 0.0529];	
	CurveDates	<pre>= [datenum('06-Nov-2000') datenum('11-Dec-2000') datenum('15-Jan-2001') datenum('05-Feb-2001') datenum('04-Mar-2001') datenum('02-Apr-2001') datenum('30-Apr-2001') datenum('25-Jun-2001') datenum('04-Sep-2001') datenum('12-Nov-2001')];</pre>	

Settle = datenum('03-Nov-2000'); Compounding = 1;

Execute the function

```
[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,...
Settle, Compounding)
```

which returns the forward rate curve ForwardRates at the maturity dates CurveDates.

ForwardRates =

0.0458 0.0506 0.0535 0.0522 0.0541 0.0498 0.0544 0.0531 0.0594 0.0476 CurveDates = 730796 730831 730866 730887 730914 730943 730971 731027 731098 731167

For readability, ZeroRates and ForwardRates are shown here only to the basis point. However, MATLAB computed them at full precision. If you enter ZeroRates as shown, ForwardRates may differ due to rounding.

See Also fwd2zero and other functions for Term Structure of Interest Rates

Purpose	Par yield curve given a zero curve		
Syntax		ates] = zero2pyld(ZeroRates, CurveDates, Settle, Basis, OutputCompounding)	
Arguments	ZeroRates	A number of bonds (NUMBONDS) by 1 vector of annualized zero rates, as decimal fractions. In aggregate, the rates constitute an implied zero curve for the investment horizon represented by CurveDates.	
	CurveDates	A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the zero rates.	
	Settle	A serial date number that is the common settlement date for the zero rates.	
	Compounding	(Optional) A scalar that sets the rate at which the implied zero rates are compounded when annualized. Allowed values are:	
		1 annual compounding	
		2 semiannual compounding (default)	
		3 compounding three times per year	
		4 quarterly compounding	
		6 bimonthly compounding	
		12 monthly compounding	
		365 daily compounding	
		-1 continuous compounding	
	Basis	(Optional) Day-count basis used to annualize the implied zero rates. $0 = actual/actual (default), 1 = 30/360 (SIA),$ 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 = actual/365 (Japanese).	
	OutputCompounding	(Optional) Value representing the rate at which the par rates are compounded. Default = Compounding.	

zero2pyld

Description [ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle, Compounding, Basis, OutputCompounding) returns a par yield curve given a zero curve and its maturity dates.

- ParRates A NUMBONDS-by-1 vector of annualized par yields, as decimal fractions. (Par yields = coupon rates.) In aggregate, the yield rates in ParRates constitute a par yield curve for the investment horizon represented by CurveDates.
- CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date numbers) that correspond to the par yield rates. This vector is the same as the input vector CurveDates.

Examples

Given

- A zero curve over a set of maturity dates and
- A settlement date
- Annual compounding for the input zero curve and monthly compounding for the output par rates

compute a par yield curve.

ZeroRates = [0.0457]0.0487 0.0506 0.0507 0.0505 0.0504 0.0506 0.0516 0.0539 0.0530];CurveDates = [datenum('06-Nov-2000') datenum('11-Dec-2000') datenum('15-Jan-2001') datenum('05-Feb-2001') datenum('04-Mar-2001') datenum('02-Apr-2001') datenum('30-Apr-2001')

```
datenum('25-Jun-2001')
              datenum('04-Sep-2001')
              datenum('12-Nov-2001')];
Settle = datenum('03-Nov-2000');
Compounding = 1;
OutputCompounding = 12;
[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle, Compounding, [], OutputCompounding)
ParRates =
    0.0479
    0.0511
    0.0530
    0.0531
    0.0526
    0.0524
    0.0525
    0.0534
    0.0555
    0.0543
CurveDates =
      730796
      730831
      730866
      730887
      730914
      730943
      730971
      731027
      731098
      731167
```

For readability, ZeroRates and ParRates are shown only to the basis point. However, MATLAB computed them at full precision. If you enter ZeroRates as shown, ParRates may differ due to rounding. **See Also** py1d2zero and other functions for Term Structure of Interest Rates

Bibliography

For the well-known algorithms and formulas used in the Financial Toolbox (such as how to compute a loan payment given principal, interest rate, and length of the loan), no references are given here. The references here pertain to less common formulas.

Bond Pricing and Yields

The pricing and yield formulas for fixed-income securities come from:

Mayle, Jan. *Standard Securities Calculation Methods*. New York: Securities Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

In many cases these formulas compute the price of a security given yield, dates, rates, and other data. These formulas are nonlinear, however; so when solving for an independent variable within a formula, the Financial Toolbox uses Newton's method. See any elementary numerical methods textbook for the mathematics underlying Newton's method.

Term Structure of Interest Rates

The formulas and methodology for term structure functions come from:

Fabozzi, Frank J. "The Structure of Interest Rates." Ch. 6 in Fabozzi, Frank J. and T. Dessa Fabozzi, eds. *The Handbook of Fixed Income Securities.* 4th ed. New York: Irwin Professional Publishing. 1995. ISBN 0-7863-0001-9.

McEnally, Richard W. and James V. Jordan. "The Term Structure of Interest Rates." Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. "Calculating Zero Coupon Rates." *Swap and Derivative Financing*. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional Publishing. 1994. ISBN 1-55738-542-4.

Derivatives Pricing and Yields

The pricing and yield formulas for derivative securities come from:

Chriss, Neil A. "Black-Scholes and Beyond: Option Pricing Models," Chicago: Irwin Professional Publishing. 1997. ISBN 0-7863-1025-1.

Cox, J.; S. Ross; and M. Rubenstein, "Option Pricing: A Simplified Approach", Journal of Financial Economics 7, Sept. 1979, pp. 229 - 263 Hull, John C., *Options, Futures, and Other Derivatives*, Prentice Hall, 5th edition, 2003, ISBN 0-13-009056-5

Portfolio Analysis

The Markowitz model is used for portfolio analysis computations. For a discussion of this model see Chapter 7 of:

Bodie, Zvi, Alex Kane, and Alan J. Marcus. *Investments*. Burr Ridge, IL: Irwin. 2nd. ed., 1993, ISBN 0-256-08342-8.

To solve the quadratic minimization problem associated with finding the efficient frontier, the toolbox uses the fmincon function (finds the constrained minimum of a function of several variables) in the MATLAB Optimization Toolbox. See that toolbox documentation for more details.

Financial Statistics

The discussion of computing statistical values for portfolios containing missing data elements derives from the following references:

Little, Roderick J. A. and Donald B. Rubin, *Statistical Analysis with Missing Data*, 2nd ed., John Wiley & Sons, Inc., 2002.

Meng, Xiao-Li and Donald B. Rubin, "Maximum Likelihood Estimation via the ECM Algorithm," *Biometrika*, Vol. 80, No. 2, 1993, pp. 267-278.

Sexton, Joe and Anders Rygh Swensen, "ECM Algorithms That Converge at the Rate of EM," *Biometrika*, Vol. 87, No. 3, 2000, pp. 651-662.

Dempster, A. P., N. M. Laird, and Donald B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," *Journal of the Royal Statistical Society*, Series B, Vol. 39, No. 1, 1977, pp. 1-37.

Other References

Other references include:

Addendum to Securities Industry Association, *Standard Securities Calculation Methods: Fixed Income Securities Formulas for Analytic Measures*, Vol. 2, Spring 1995. This addendum explains and clarifies the end-of-month rule.

Brealey, Richard A., and Stewart C. Myers. *Principles of Corporate Finance*. New York: McGraw-Hill. 4th ed., 1991, ISBN 0-07-007405-4.

Daigler, Robert T. Advanced Options Trading. Chicago: Probus Publishing Co. 1994, ISBN 1-55738-552-1.

A Dictionary of Finance. Oxford: Oxford University Press. 1993, ISBN 0-19-285279-5.

Fabozzi, Frank J., and T. Dessa Fabozzi, eds. *The Handbook of Fixed-Income Securities*. Burr Ridge, IL: Irwin. 4th ed., 1995, ISBN 0-7863-0001-9.

Fitch, Thomas P. *Dictionary of Banking Terms*. Hauppauge, NY: Barron's. 2nd ed., 1993, ISBN 0-8120-1530-4.

Hill, Richard O., Jr. *Elementary Linear Algebra*. Orlando, FL: Academic Press. 1986, ISBN 0-12-348460-X

Luenberger, David G., *Investment Science*, Oxford University Press, 1998. ISBN: 0195108094

Marshall, John F., and Vipul K. Bansal. *Financial Engineering: A Complete Guide to Financial Innovation*. New York: New York Institute of Finance. 1992, ISBN 0-13-312588-2.

Sharpe, William F. *Macro-Investment Analysis*. An "electronic work-in-progress" published on the World Wide Web, 1995, at http://www.stanford.edu/~wfsharpe/mia/mia.htm.

Sharpe, William F., and Gordon J. Alexander. *Investments*. Englewood Cliffs, NJ: Prentice-Hall. 4th ed., 1990, ISBN 0-13-504382-4.

Stigum, Marcia, with Franklin Robinson. *Money Market and Bond Calculations*. Richard D. Irwin. 1996, ISBN 1-55623-476-7.

Glossary

Active return	Amount of return achieved in excess of the return produced by an appropriate benchmark (e.g., an index portfolio).
Active risk	Standard deviation of the active return. Also known as the tracking error.
American option	An option that can be exercised any time until its expiration date. Contrast with European option.
Amortization	Reduction in value of an asset over some period for accounting purposes. Generally used with intangible assets. Depreciation is the term used with fixed or tangible assets.
Annuity	A series of payments over a period of time. The payments are usually in equal amounts and usually at regular intervals such as quarterly, semi-annually, or annually.
Arbitrage	The purchase of securities on one market for immediate resale on another market in order to profit from a price or currency discrepancy.
Basis point	One hundredth of one percentage point, or 0.0001.
Beta	The price volatility of a financial instrument relative to the price volatility of a market or index as a whole. Beta is most commonly used with respect to equities. A high-beta instrument is riskier than a low-beta instrument.
Binomial model	A method of pricing options or other equity derivatives in which the probability over time of each possible price follows a binomial distribution. The basic assumption is that prices can move to only two values (one higher and one lower) over any short time period.
Black-Scholes model	The first complete mathematical model for pricing options, developed by Fischer Black and Myron Scholes. It examines market price, strike price, volatility, time to expiration, and interest rates. It is limited to only certain kinds of options.
Bollinger band chart	A financial chart that plots actual asset data along with three other bands of data: the upper band is two standard deviations above a user-specified moving average; the lower band is two standard deviations below that moving average; and the middle band is the moving average itself.
Bootstrapping, bootstrap method	An arithmetic method for backing an implied zero curve out of the par yield curve.
Building a binomial tree	For a binomial option model: plotting the two possible short-term price-changes values, and then the subsequent two values each, and then the subsequent two values each, and so on over time, is known as "building a binomial tree." See Binomial model.

Call	a. An option to buy a certain quantity of a stock or commodity for a specified price within a specified time. See Put. b. A demand to submit bonds to the issuer for redemption before the maturity date. c. A demand for payment of a debt. d. A demand for payment due on stock bought on margin.
Callable bond	A bond that allows the issuer to buy back the bond at a predetermined price at specified future dates. The bond contains an embedded call option; i.e., the holder has sold a call option to the issuer. See Puttable bond.
Candlestick chart	A financial chart usually used to plot the high, low, open, and close price of a security over time. The body of the "candle" is the region between the open and close price of the security. Thin vertical lines extend up to the high and down to the low, respectively. If the open price is greater than the close price, the body is empty. If the close price is greater than the open price, the body is filled. See High-low-close chart.
Сар	Interest-rate option that guarantees that the rate on a floating-rate loan will not exceed a certain level.
Cash flow	Cash received and paid over time.
Collar	Interest-rate option that guarantees that the rate on a floating-rate loan will not exceed a certain upper level nor fall below a lower level. It is designed to protect an investor against wide fluctuations in interest rates.
Convexity	A measure of the rate of change in duration; measured in time. The greater the rate of change, the more the duration changes as yield changes.
Correlation	The simultaneous change in value of two random numeric variables.
Correlation coefficient	A statistic in which the covariance is scaled to a value between minus one (perfect negative correlation) and plus one (perfect positive correlation).
Coupon	Detachable certificate attached to a bond that shows the amount of interest payable at regular intervals, usually semi-annually.Originally coupons were actually attached to the bonds and had to be cut off or "clipped" to redeem them and receive the interest payment.
Coupon dates	The dates when the coupons are paid. Typically a bond pays coupons annually or semi-annually.
Coupon rate	The nominal interest rate that the issuer promises to pay the buyer of a bond.

Covariance	A measure of the degree to which returns on two assets move in tandem. A positive covariance means that asset returns move together; a negative covariance means they vary inversely.
Delta	The rate of change of the price of a derivative security relative to the price of the underlying asset; i.e., the first derivative of the curve that relates the price of the derivative to the price of the underlying security.
Depreciation	Reduction in value of fixed or tangible assets over some period for accounting purposes. See Amortization.
Derivative	A financial instrument that is based on some underlying asset. For example, an option is a derivative instrument based on the right to buy or sell an underlying instrument.
Discount curve	The curve of discount rates vs. maturity dates for bonds.
Duration	The expected life of a fixed-income security considering its coupon yield, interest payments, maturity, and call features. As market interest rates rise, the duration of a financial instrument decreases. See Macaulay duration.
Efficient frontier	A graph representing a set of portfolios that maximizes expected return at each level of portfolio risk. See Markowitz model.
Elasticity	See Lambda.
European option	An option that can be exercised only on its expiration date. Contrast with American option.
Exercise price	The price set for buying an asset (\mbox{call}) or selling an asset $(\mbox{put}).$ The strike price.
Face value	The maturity value of a security. Also known as par value, principal value, or redemption value.
Fixed-income security	A security that pays a specified cash flow over a specific period. Bonds are typical fixed-income securities.
Floor	Interest-rate option that guarantees that the rate on a floating-rate loan will not fall below a certain level.
Forward curve	The curve of forward interest rates vs. maturity dates for bonds.
Forward rate	The future interest rate of a bond inferred from the term structure, especially from the yield curve of zero-coupon bonds, calculated from the growth factor of an investment in a zero held until maturity.

Future value	The value that a sum of money (the present value) earning compound interest will have in the future.
Gamma	The rate of change of delta for a derivative security relative to the price of the underlying asset; i.e., the second derivative of the option price relative to the security price.
Greeks	Collectively, "greeks" refer to the financial measures delta, gamma, lambda, rho, theta, and vega, which are sensitivity measures used in evaluating derivatives.
Hedge	A securities transaction that reduces or offsets the risk on an existing investment position.
High-low-close chart	A financial chart usually used to plot the high, low, open, and close price of a security over time. Plots are vertical lines whose top is the high, bottom is the low, open is a short horizontal tick to the left, and close is a short horizontal tick to the right.
Implied volatility	For an option, the variance that makes a call option price equal to the market price. Given the option price, strike price, and other factors, the Black-Scholes model computes implied volatility.
Internal rate of return	 a. The average annual yield earned by an investment during the period held. b. The effective rate of interest on a loan. c. The discount rate in discounted cash flow analysis. d. The rate that adjusts the value of future cash receipts earned by an investment so that interest earned equals the original cost. See Yield to maturity.
Issue date	The date a security is first offered for sale. That date usually determines when interest payments, known as coupons, are made.
Ito process	Statistical assumptions about the behavior of security prices. For details, see the book by Hull listed in Appendix A, "Bibliography."
Lambda	The percentage change in the price of an option relative to a 1% change in the price of the underlying security. Also known as Elasticity.
Long position	Outright ownership of a security or financial instrument. The owner expects the price to rise in order to make a profit on some future sale.
Long rate	The yield on a zero-coupon Treasury bond.
Macaulay duration	A widely used measure of price sensitivity to yield changes developed by Frederick Macaulay in 1938. It is measured in years and is a weighted

	average-time-to-maturity of an instrument. The Macaulay duration of an income stream, such as a coupon bond, measures how long, on average, the owner waits before receiving a payment. It is the weighted average of the times payments are made, with the weights at time T equal to the present value of the money received at time T.
Markowitz model	A model for selecting an optimum investment portfolio, devised by H. M. Markowitz. It uses a discrete-time, continuous-outcome approach for modeling investment problems, often called the mean-variance paradigm. See Efficient frontier.
Maturity date	The date when the issuer returns the final face value of a bond to the buyer.
Mean	a. A number that typifies a set of numbers, such as a geometric mean or an arithmetic mean. b. The average value of a set of numbers.
Modified duration	The Macaulay duration discounted by the per-period interest rate; i.e., divided by (1+rate/frequency).
Monte-Carlo simulation	A mathematical modeling process. For a model that has several parameters with statistical properties, pick a set of random values for the parameters and run a simulation. Then pick another set of values, and run it again. Run it many times (often 10,000 times) and build up a statistical distribution of outcomes of the simulation. This distribution of outcomes is then used to answer whatever question you are asking.
Moving average	A price average that is adjusted by adding other parametrically determined prices over some time period.
Moving-averages chart	A financial chart that plots leading and lagging moving averages for prices or values of an asset.
Normal (bell-shaped) distribution	In statistics, a theoretical frequency distribution for a set of variable data, usually represented by a bell-shaped curve symmetrical about the mean.
Odd first or last period	Fixed-income securities may be purchased on dates that do not coincide with coupon or payment dates. The length of the first and last periods may differ from the regular period between coupons, and thus the bond owner is not entitled to the full value of the coupon for that period. Instead, the coupon is pro-rated according to how long the bond is held during that period.

Option	A right to buy or sell specific securities or commodities at a stated price (exercise or strike price) within a specified time. An option is a type of derivative.
Par value	The maturity or face value of a security or other financial instrument.
Par yield curve	The yield curve of bonds selling at par, or face, value.
Point and figure chart	A financial chart usually used to plot asset price data. Upward price movements are plotted as X's and downward price movements are plotted as O's.
Present value	Today's value of an investment that yields some future value when invested to earn compounded interest at a known interest rate.; i.e., the future value at a known period in time discounted by the interest rate over that time period.
Principal value	See Par value.
Purchase price	Price actually paid for a security. Typically the purchase price of a bond is not the same as the redemption value.
Put	An option to sell a stipulated amount of stock or securities within a specified time and at a fixed exercise price. See Call.
Puttable bond	A bond that allows the holder to redeem the bond at a predetermined price at specified future dates. The bond contains an embedded put option; i.e., the holder has bought a put option. See Callable bond.
Quant	A quantitative analyst; someone who does numerical analysis of financial information in order to detect relationships, disparities, or patterns that can lead to making money.
Redemption value	See Par value.
Regression analysis	Statistical analysis techniques that quantify the relationship between two or more variables. The intent is quantitative prediction or forecasting, particularly using a small population to forecast the behavior of a large population.
Rho	The rate of change in a derivative's price relative to the underlying security's risk-free interest rate.
Sensitivity	The "what if" relationship between variables; the degree to which changes in one variable cause changes in another variable. A specific synonym is volatility.

Settlement date	The date when money first changes hands; i.e., when a buyer actually pays for a security. It need not coincide with the issue date.
Short rate	The annualized one-period interest rate.
Short sale, short position	The sale of a security or financial instrument not owned, in anticipation of a price decline and making a profit by purchasing the instrument later at a lower price, and then delivering the instrument to complete the sale. See Long position.
Spot curve, spot yield curve	See Zero curve.
Spot rate	The current interest rate appropriate for discounting a cash flow of some given maturity.
Spread	For options, a combination of call or put options on the same stock with differing exercise prices or maturity dates.
Standard deviation	A measure of the variation in a distribution, equal to the square root of the arithmetic mean of the squares of the deviations from the arithmetic mean; the square root of the variance.
Stochastic	Involving or containing a random variable or variables; involving chance or probability.
Straddle	A strategy used in trading options or futures. It involves simultaneously purchasing put and call options with the same exercise price and expiration date, and it is most profitable when the price of the underlying security is very volatile.
Strike	Exercise a put or call option.
Strike price	See Exercise price.
Swap	A contract between two parties to exchange cash flows in the future according to some formula.
Swaption	A swap option; an option on an interest-rate swap. The option gives the holder the right to enter into a contracted interest-rate swap at a specified future date. See Swap.
Term structure	The relationship between the yields on fixed-interest securities and their maturity dates. Expectation of changes in interest rates affects term structure, as do liquidity preferences and hedging pressure. A yield curve is one representation in the term structure.

Theta	The rate of change in the price of a derivative security relative to time. Theta is usually very small or negative since the value of an option tends to drop as it approaches maturity.
Tracking error	See active risk.
Treasury bill	Short-term U.S. government security issued at a discount from the face value and paying the face value at maturity.
Treasury bond	Long-term debt obligation of the U.S. government that makes coupon payments semi-annually and is sold at or near par value in \$1000 denominations or higher. Face value is paid at maturity.
Variance	The dispersion of a variable. The square of the standard deviation.
Vega	The rate of change in the price of a derivative security relative to the volatility of the underlying security. When vega is large the security is sensitive to small changes in volatility.
Volatility	a. Another general term for sensitivity. b. The standard deviation of the annualized continuously compounded rate of return of an asset. c. A measure of uncertainty or risk.
Yield	a. Measure of return on an investment, stated as a percentage of price. Yield can be computed by dividing return by purchase price, current market value, or other measure of value. b. Income from a bond expressed as an annualized percentage rate. c. The nominal annual interest rate that gives a future value of the purchase price equal to the redemption value of the security. Any coupon payments determine part of that yield.
Yield curve	Graph of yields (vertical axis) of a particular type of security versus the time to maturity (horizontal axis). This curve usually slopes upward, indicating that investors usually expect to receive a premium for securities that have a longer time to maturity. The benchmark yield curve is for U.S. Treasury securities with maturities ranging from three months to 30 years. See Term structure.
Yield to maturity	A measure of the average rate of return that will be earned on a bond if held to maturity.
Zero curve, zero-coupon yield curve	A yield curve for zero-coupon bonds; zero rates versus maturity dates. Since the maturity and duration (Macaulay duration) are identical for zeros, the zero curve is a pure depiction of supply/demand conditions for loanable funds across a continuum of durations and maturities. Also known as spot curve or spot yield curve.

Zero-coupon bond, or Zero A bond that, instead of carrying a coupon, is sold at a discount from its face value, pays no interest during its life, and pays the principal only at maturity.

Glossary-10

Index

Numerics

1900 date system 5-209, 5-312 1904 date system 5-209, 5-312 360-day year 5-143 365-day year 5-150

A

abs2active 5-15 accrued interest 2-21, 5-22, 5-24 computing fractional period 5-20 acrubond 5-22acrudisc 5-24 active return 3-20 active risk 3-20 active2abs 5-17 actual days between dates 5-151 adding a scalar and a matrix 1-8 adding matrices 1-7 advance payments, periodic payment given 5-222 after-tax rate of return 5-282 algebra, linear 1-8, 1-13 American options 2-3, 2-36 amortization 1-21, 2-18, 2-19, 5-25 amortize 5-25 analysis models for equity derivatives 2-34 analyzing and computing cash flows 2-16 equity derivatives 2-33 portfolios 2-37 annuity 2-18 payment of with odd first period 5-223 periodic interest rate of 5-28 periodic payment of loan or 5-224 annurate 5-28 annuterm 5-29

apostrophe or prime character (') 1-6 arguments function return 1-20 interest rate 1-21 matrices as, limitations 1-21 vectors as, limitations 1-21 array operations 1-17 ASCII character 1-19 asset covariance matrix with exponential weighting 5-184 asset life 1-21 axis labels, converting 5-126

B

bank format 5-123 base date 5-133 basis 2-21basis, day-count 5-154 beytbill 5-30 binomial functions 2-3 model 2-35 put and call pricing 5-31 tree, building 2-36 binprice 5-31 Black's option pricing 5-35 Black-Scholes elasticity 5-42 functions 2-3 implied volatility 5-40 model 2-34 options 4-21, 4-23 put and call pricing 5-44 sensitivity to interest rate change 5-46

time-until-maturity change 5-48 underlying delta change 5-39 underlying price change 5-37 underlying price volatility 5-50 blkimpv 5-33 blkprice 5-35 blsdelta 5-37 blsgamma 5-39 blsimpv 5-40 blslambda 5-42 blsprice 5-44 blsrho 5-46 blstheta 5-48 blsvega 5-50 bndconvp 5-51 bndconvy 5-54 bnddurp 5-57 bnddury 5-60 bndprice 5-63 bndspread 5-66 bndyield 5-71 bolling 5-74 Bollinger band chart 2-14 bond convexity 4-3 duration 4-3 equivalent yield for Treasury bill 5-30 portfolio constructing to hedge against duration and convexity 4-6 visualizing sensitivity of price to parallel shifts in the yield curve 4-8 sensitivity of prices to changes in interest rates 4 - 3zero-coupon 5-324 bootstrapping 2-31, 5-294, 5-323, 5-328 building a binomial tree 2-36

busdate 5-76 business date last of month 5-205 business day next 2-10, 5-76 previous 5-76 business days 5-203

С

call and put pricing Black-Scholes 5-44 candle 5-78 candlestick chart 5-78 capital allocation line 3-3 cash flow analyzing and computing 2-16 convexity 5-84 dates 2-11, 5-85 duration 5-88 future value of varying 5-194 internal rate of return 5-202 internal rate of return for nonperiodic 5-314 irregular 5-194 modified internal rate of return 5-212 negative 2-16 portfolio form of amounts 5-89 present value of varying 5-272 sensitivity of 2-18 uniform payment equal to varying 5-225 cell array 4-16 cfamounts 5-79 cfconv 5-84 cfdates 5-85 cfdur 5-88 cfport 5-89 cftimes 5-92

character array strings stored as 1-19 character, ASCII 1-19 chart Bollinger band 2-14 candlestick 5-78 high, low, open, close 5-199 leading and lagging moving averages 5-216 point and figure 5-236 charting financial data 2-12 colon (:) 1-6 commutative law 1-8, 1-13 computing cash flows 2-16 dot products of vectors 1-10 yields for fixed-income securities 2-20 constraint functions 3-14 constraint matrix 3-17 constructing a bond portfolio to hedge against duration and convexity 4-6 greek-neutral portfolios of European stock options 4-12 conventions SIA 2-20 conversions date input 2-5 date output 2-7 converting and handling dates 2-4 axis labels 5-126 convexity 4-3 cash flow 5-84 constructing a bond portfolio to hedge against 4-6portfolio 4-4, 4-6 corr2cov 5-94

coupon bond prices to zero curve 5-323 yields to zero curve 5-328 coupon date after settlement date 5-99 days between 5-113, 5-116 coupon dates 2-27 coupon payments remaining until maturity 5-96 coupon period containing settlement date 5-119 fraction of 5-19 coupons payable between dates 5-96 cov2corr 5-95 covariance matrix 3-5 covariance matrix with exponential weighting 5 - 184cpncount 5-96 cpndaten 5-99 cpndatenq 5-102 cpndatep 5-106 cpndatepg 5-109 cpndaysn 5-113 cpndaysp 5-116 cpnpersz 5-119 cur2frac 5-122 cur2str 5-123 currency decimal 5-188 formatting 2-12 fractional 5-122, 5-188 values 5-122 current date 5-293 and time 2-8, 5-218

D

date

base 5-133 components 5-139 conversions 2-5 current 2-8, 5-218, 5-293 end of month 5-182 first business, of month 5-186 formats 2-4 hour of 5-201 input conversions 2-5 last date of month 5-182 last weekday in month 5-207 maturity 2-21 minute of 5-211 number 2-4, 5-133 displaying as string 5-128 Excel to MATLAB 5-312 indices of in matrix 5-129 MATLAB to Excel 5-209 of day in future or past month 5-130 of future or past workday 5-141 output conversions 2-7 seconds of 5-281 starting, add month to 5-130 string 2-4, 5-136 vector 5-139 vear of 5-316 date 2-8 date of specific weekday in month 5-219 date system 1900 5-209, 5-312 1904 5-209, 5-312 date2time 5-124 dateaxis 5-126 datedisp 5-128 datefind 5-129 datemnth 5-130 datenum 5-133

dates actual days between 5-151 business days 5-203 cash-flow 2-11, 5-85 coupon 2-27 days between 5-143, 5-150, 5-151, 5-152, 5-154 determining 2-9 first coupon 2-20 fraction of year between 5-318 handling and converting 2-4 investment horizon 2-31 issue 2-20last coupon 2-20 number of months between 5-215 quasi-coupon 2-20 settlement 2-20 vector of 1-20 working days between 5-311 datestr 5-136 datevec 5-139 datewrkdy 5-141 day date of specific weekday in month 5-219 of month 5-142 of month, last 5-183 of the week 5-309 day 5-142 day-count basis 5-154 day-count convention 2-21 days between coupon date and settlement date 5-116 dates 5-143, 5-150, 5-151, 5-152, 5-154, 5 - 311settlement date and next coupon date 5-113 business 5-203 holidays 5-200

in coupon period containing settlement date 5 - 119last business date of month 5-205 last weekday in month 5-207 nontrading 5-200 number of, in year 5-317 days360 5-143 days360e 5-144 days360isda 5-146 days360psa 5-148 days365 5-150 daysact 5-151 daysadd 5-152daysdif 5-154 dec2thirtytwo 5-156 decimal currency 5-188 to fractional currency 5-122 declining-balance depreciation fixed 2-18, 5-157 general 2-18, 5-158 definitions 1-4 delta 2-33 change, Black-Scholes sensitivity to underlying 5 - 39depfixdb 5-157 depgendb 5-158 deprdv 5-159 depreciable value, remaining 5-159 depreciation 2-18 fixed declining-balance 2-18, 5-157 general declining-balance 2-18, 5-158 straight-line 2-18, 5-161 sum of years' digits 2-18, 5-160 depsoyd 5-160 depstln 5-161 derivatives equity, pricing and analyzing 2-33

sensitivity measures for 2-33 determining dates 2-9 disc2zero 5-162 discount curve from zero curve 5-333 to zero curve 5-162 discount rate of a security 5-165 discount security 5-24 future value of 5-192 price of 5-266 vield of 5-319 discrate 5-165 dividing matrices 1-13 dot products of vectors 1-10 duration cash-flow and modified 5-88 constructing a bond portfolio to hedge against 4-6for fixed-income securities 2-29 Macaulay 2-29 modified 2-29 portfolio 4-4, 4-6

Ε

ECM (expectation conditional maximization) 5-173 ecmnfish 5-166 ecmnhess 5-168 ecmninit 5-170 ecmnmle 5-172 hard failure 3-33 soft failure 3-33 ecmnobj 5-178 ecmnstd 5-179 effective rate of return 5-181 efficient frontier 3-5

plotting an 4-19 tracking error 3-20 effrr 5-181 elasticity **Black-Scholes 5-42** element-by-element 1-7 operating 1-17 elements, referencing matrix 1-4 end-of-month rule 2-23 enlarging matrices 1-5 eomdate 5-182 eomday 5-183 equations solving simultaneous linear 1-13 equity derivatives 2-33 analysis models for 2-34 European options 2-3 constructing greek-neutral portfolios of 4-12 ewstats 5-184 Excel date number from MATLAB date number 5-209 to MATLAB date number 5-312 expectation conditional maximization 3-24, 5 - 173exponential weighting of covariance matrix 5 - 184

F

fbusdate 5-186 financial data charting 2-12 first business date of month 5-186 first coupon date 2-20 fixed declining-balance depreciation 2-18, 5-157 fixed periodic payments future value with 5-193 fixed-income securities cash-flow dates 5-85 Macaulay and modified durations for 2-29 pricing 2-28 pricing and computing yields for 2-20 terminology 2-20 yield functions for 2-28 fixed-income sensitivities 2-29 formats bank 5-123 date 2-4 formatting currency and charting financial data 2 - 12forward curve from zero curve 5-336 to zero curve 5-196 frac2cur 5-188 fraction of coupon period 5-19 year between dates 5-318 fractional currency 5-122, 5-188 frontcon 3-5, 5-189 frontier plotting an efficient 4-19 frontier, efficient 3-5 function return arguments 1-20 future month, date of day in 5-130 future value 2-17, 5-29 of discounted security 5-192 of varying cash flow 5-194 with fixed periodic payments 5-193 fvdisc 5-192 fvfix 5-193 fvvar 5-194 fwd2zero 5-196

G

gamma 2-33 general declining-balance depreciation 2-18, 5-158 generating and referencing matrix elements 1-6 graphics producing 4-19 three-dimensional 4-11 greek-neutral portfolios, constructing 4-12 greeks 2-33 neutrality 4-12

Η

handling and converting dates 2-4 hedging 4-3 a bond portfolio against duration and convexity 4-6 high, low, open, close chart 5-199 highlow 5-199 holidays 2-10 holidays 5-200 holidays and nontrading days 5-200 hour 5-201 hour of date or time 5-201

I

identity matrix 1-13 iid (independent identically-distributed data) 5-170 implied volatility 2-34 Black-Scholes 5-40 independent identically-distributed data 5-170 indices of date numbers in matrix 5-129 of nonrepeating integers in matrix 5-129

indifference curve 3-8 inner dimension rule 1-8 input conversions 2-5 string 1-19 interest 5-25 accrued 5-22, 5-24 on loan 2-18 interest rate swap 4-15 interest rates arguments 1-21 Black-Scholes sensitivity to change 5-46 of annuity, periodic 5-28 rate of return 2-16 risk-free 4-24 sensitivity of bond prices to changes in 4-3 term structure 2-2, 2-30 internal rate of return 5-202 for nonperiodic cash flow 5-314 modified 5-212 inversion, matrix 1-13 investment horizon 2-31 irr 5-202 isbusday 5-203 issue date 2-20 Ito process 2-34

L

lagging and leading moving averages chart 5-216 lambda 2-33 last business date of month 5-205 date of month 5-182 day of month 5-183 weekday in month 5-207 last coupon date 2-20

Μ

m2xdate 5-209 Macaulay duration 4-3 for fixed-income securities 2-29 MATLAB date number from Excel date number 5-312 to Excel date number 5-209 matrices adding and subtracting 1-7 as arguments, limitations 1-21 dividing 1-13 enlarging 1-5 multiplying 1-8, 1-11 multiplying vectors and 1-10 of string input 1-19 singular 1-13 square 1-13 transposing 1-6 matrix 1-4 adding or subtracting a scalar 1-8

algebra refresher 1-7 covariance 5-184 elements generating 1-6 referencing 1-4 identity 1-13 indices of date numbers 5-129 indices of integers in 5-129 inversion 1-13 multiplying by a scalar 1-12 numbers and strings in a 1-20 maturity price with interest at 5-268 yield of a security paying interest at 5-320 maturity date 2-21 maximum likelihood estimate (MLE) 5-175 minute 5-211 minute of date or time 5-211 mirr 5-212 missing data 3-24 MLE (maximum likelihood estimate) 5-175 modified duration 4-3, 5-88 for fixed-income securities 2-29 modified internal rate of return 5-212 month add, to starting date 5-130 date of specific weekday 5-219 day of 5-142 first business date of 5-186 last business date 5-205 last date of 5-182 last day of 5-183 month 5-214 months last weekday in 5-207 number of months between dates 5-215 months 5-215

movavg 5-216 moving averages chart 5-216 multiplying a matrix by a scalar 1-12 matrices 1-8 two matrices 1-11 vectors 1-8 vectors and matrices 1-10

Ν

names variable 1-7 NaN 2-25 negative cash flows 2-16 Newton's method 2-28 next business day 2-10 coupon date after settlement date 5-99 or previous business day 5-76 nominal rate of return 5-217 nomrr 5-217 nontrading days 2-10, 5-200 notation 1-4 row, column 1-4 now 5-218 number of days in year 5-317 periods to obtain value 5-29 whole months between dates 5-215 numbers and strings in a matrix 1-20 date 2-4 nweekdate 5-219

0

observation 5-172 odd first period payment of loan or annuity with 5-223 operating element-by-element 1-17 operations, array 1-17 opprofit 5-221 optimal portfolio 3-2 option leverage of 5-42 plotting sensitivities of 4-21 plotting sensitivities of a portfolio of 4-23 pricing Black's model 5-35 profit 5-221 output conversions, date 2-7

P

par value 2-21 par yield curve from zero curve 5-339 to zero curve 5-274 past month, date of day in 5-130 payadv 5-222 payment of loan or annuity with odd first period 5-223 periodic, given number of advance payments 5 - 222periodic, of loan or annuity 5-224 uniform, equal to varying cash flow 5-225 pavodd 5-223 payper 5-224 payuni 5-225 pcalims 5-226 pcgcomp 5-229 pcglims 5-231

pcpval 5-234 period 2-21 periodic interest rate of annuity 5-28 periodic payment future value with fixed 5-193 given advance payments 5-222 of loan or annuity 5-224 present value with fixed 5-271 pivot year 5-133 plotting efficient frontier 4-19 sensitivities of a portfolio of options 4-23 sensitivities of an option 4-21 point and figure chart 5-236 pointfig 5-236 portalloc 3-9, 3-10, 5-237 portcons 3-14, 5-240 portfolio convexity 4-4, 4-6 duration 4-4, 4-6 expected rate of return 5-258 of options, plotting sensitivities of 4-23 optimal 3-2 optimization 3-3 risks, returns, and weights randomized 5-247 selection 3-8 portfolios analyzing 2-37 of European stock options constructing greek-neutral 4-12 portopt 5-244 portrand 5-247 portsim 5-248 portstats 5-258 portvrisk 5-260 prbyzero 5-262

prdisc 5-266 present value 2-17 of varying cash flow 5-272 with fixed periodic payments 5-271 previous quasi coupon date 5-110 price change, Black-Scholes sensitivity to underlying 5 - 37of discounted security 5-266 of Treasury bill 5-270 volatility, Black-Scholes sensitivity to underlying 5-50 with interest at maturity 5-268 pricing and analyzing equity derivatives 2-33 and computing yields for fixed-income securities 2 - 20fixed-income securities 2-28 principal 5-25 prmat 5-268 profit, option 5-221 prtbill 5-270 purchase price 2-21 put and call pricing binomial 5-31 Black-Scholes 5-44 pvfix 5-271 pvvar 5-272 pyld2zero 5-274

Q

quasi coupon date previous 5-110 quasi-coupon dates 2-20

R

randomized portfolio risks, returns, and weights 5 - 247rate of a security, discount 5-165 rate of return 2-16 after-tax 5-282 effective 5-181 internal 5-202 internal for nonperiodic cash flow 5-314 modified internal 5-212 nominal 5-217 portfolio expected 5-258 record 5-172 redemption value 2-21 reference date 2-27 referencing matrix elements 1-4, 1-6 remaining depreciable value 2-18, 5-159 ret2tick 5-278 return arguments, function 1-20 rho 2-33 risk aversion 3-8 risk-free interest rates 4-24 risks returns, and weights randomized portfolio 5-247 row, column notation 1-4 row-by-column 1-4

S

scalar 1-4 adding or subtracting 1-8 multiplying a matrix by 1-12 second 5-281 seconds of date or time 5-281 securities industry association 2-20 sensitivity

fixed-income 2-29 measures for derivatives 2-33 of a portfolio of options, plotting 4-23 of an option, plotting 4-21 of bond prices to changes in interest rates 4-3 of cash flow 2-18 to interest rate change, Black-Scholes 5-46 to time-until-maturity change, Black-Scholes 5 - 48to underlying delta change, Black-Scholes 5 - 39to underlying price change, Black-Scholes 5 - 37to underlying price volatility, Black-Scholes 5 - 50visualizing to parallel shifts in the yield curve 4 - 8settlement date 2-20 coupon period containing 5-119 days between previous coupon date and 5-116 days between, and coupon date 5-113 next coupon date after 5-99 SIA 2-20 compatibility 2-20 default parameter values 2-24 framework 2-23 order of precedence 2-27 use of nonlinear formulas 2-28 SIA conventions 2-20 single quotes 1-19 singular matrices 1-13 solving sample problems with the toolbox 4-2 spreadsheets 1-4 square matrices 1-13 straight-line depreciation 2-18, 5-161

strings and numbers in a matrix 1-20 date 2-4, 5-136 input, matrices of 1-19 stored as character array 1-19 subtracting a scalar and a matrix 1-8 matrices 1-7 sum of years' digits depreciation 2-18, 5-160 swap 4-15 synch date 2-27 synchronization date 2-27 system of linear equations 1-13

Т

taxedrr 5-282 tbl2bond 5-283term structure 2-2, 2-30, 4-3, 5-162, 5-196, 5-274, 5-283, 5-323, 5-328, 5-333, 5-336, 5-339 parameters from Treasury bond parameters 5 - 294terminology, fixed-income securities 2-20 theta 2-34 thirdwednesday 5-285 thirtytwo2dec 5-287 three-dimensional graphics 4-11 tick labels 5-126 tick2ret 5-288 time current 2-8, 5-218 hour of 5-201 minute of 5-211 seconds of 5-281 time factor 5-93 time2date 5-290 time-until-maturity change

Black-Scholes sensitivity to 5-48 today 5-293 tr2bonds 5-294 tracking error 3-20 tracking error efficient frontier 3-20 transposing matrices 1-6 Treasury bill 2-30 bond equivalent yield for 5-30 parameters to Treasury bond parameters 5-283 price of 5-270 yield of 5-322 Treasury bond 2-30 parameters from Treasury bill parameters 5-283 to term-structure parameters 5-294

U

ugarch 5-297 ugarchllf 5-299 ugarchpred 5-301 ugarchsim 5-304 uniform payment equal to varying cash flow 5-225

V

variable names 1-7 vector 1-4 date 5-139 of dates 1-20 vectors as arguments, limitations 1-21 computing dot products of 1-10 multiplying 1-8 multiplying matrices and 1-10 vega 2-34 visualizing the sensitivity of a bond portfolio's price to parallel shifts in the yield curve 4-8 volatility Black-Scholes implied 5-40 implied 2-34

W

week, day of 5-309 weekday date of specific, in month 5-219 weekday 5-309 workday, date of future or past 5-141 working days between dates 5-311 wrkdydif 5-311

Х

x2mdate 5-312 xirr 5-314

Y

year fraction of between dates 5-318 number of days in 5-317 of date 5-316 year 5-316 yeardays 5-317 yearfrac 5-318 yield curve 4-3, 4-6 visualizing sensitivity of bond portfolio's price to parallel shifts in 4-8 for Treasury bill, bond equivalent 5-30 functions for fixed-income securities 2-28 of discounted security 5-319 of security paying interest at maturity 5-320 of Treasury bill 5-322 yields for fixed-income securities, pricing and computing 2-20 yield-to-maturity 2-21 ylddisc 5-319 yldmat 5-320 yldtbill 5-322

Z

zbtprice 5-323 zbtyield 5-328 zero curve 5-294, 5-324, 5-329 from coupon bond prices 5-323 from coupon bond yields 5-328 from discount curve 5-162 from forward curve 5-196 from par yield curve 5-274 to discount curve 5-333 to forward curve 5-336 to par yield curve 5-339 zero2disc 5-333 zero2fwd 5-336 zero2pyld 5-339 zero-coupon bond 5-163, 5-324, 5-329 Index